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ABSTRACT

KEYWORDS QKD; Optical Communication; DSP

This work presents the details of implementing a continuous-variable quantum key

distribution (CV-QKD) system using coherent reception. The research investigates

factors that influence the secret key rate (SKR) in a practical setting, such as laser

phase noise, hardware imperfections, and the considered security model. In addition,

the study employs signal processing algorithms typically used in coherent optical

communication utilizing homodyne detection. The experiment results demonstrate

the proposed system’s feasibility and highlight the importance of considering practical

limitations when implementing CV-QKD in real-world applications. Overall, this work

contributes to the advancement of quantum communication technology and lays the

foundation for CV-QKD field implementation.
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CHAPTER 1

INTRODUCTION

1.1 CRYPTOGRAPHY

The elementary form of a communication system is two parties, often referred to as Alice

and Bob, who would like to exchange some information. In the presence of channel noise,

the transmitted and received information will exhibit some inconsistency which can be

mitigated through the use of an error correcting code (ECC). In addition to the intended

message, redundant data is included to ensure error-free communication. The needed

number of error-correcting bits is directly proportional to the channel noise, which was

first mathematically quantified by Claude Shannon in 1948 [1].

Communication links are prone to eavesdropping, where an adversary, often named

Eve, gains access to the exchanged message. The countermeasure is to conceal the raw

message, known as plaintext, by encryption. The encrypted message, referred to as

ciphertext, can be mapped back to the original message only by the intended recipient

possessing the necessary knowledge.

Symmetric key cryptography is the case where the same key is used to encrypt and decrypt

the message. The secrecy of the message may stem from the undisclosed key and the

obscurity of the used cipher. The latter is known as security through obscurity, which is

discouraged as design leakage will render all the developed hardware obsolete [2], similar

to what happened to the Enigma machine utilized by the Germans in WWII. Therefore,

the conventional practice is to utilize an unrevealed key with a reliable encryption

algorithm. Some algorithms, like the substitution cipher (e.g., Caeser), are prone to

elemental attacks (e.g., frequency analysis), rendering them not secure for symmetric key

encryption. Once again, Claude Shannon was the one to set the foundation of modern



cryptography in his 1949 work [3], where he introduced the framework upon which

ciphers are evaluated. Aside from the one-time pad (OTP), all ciphers are breakable for

some available computational power. What distinguishes one cipher from another is the

amount of time needed to crack it. For example, the advanced encryption standard (AES),

developed in 1999 [4] and the most commonly used symmetric algorithm, requires

billions of years to brute-force with the strongest existing supercomputer. In the OTP

cipher, the bitwise exclusive or (XOR) operation is utilized to encrypt the message with a

same-size key. As its name suggests, the OTP cipher uses the key only once, making it

impractical since the pre-shared key will be quickly exhausted.

When the keys used for encryption and decryption are different, the process is called

asymmetric (public-key) cryptography, elevating the burden of key sharing in symmetric

cryptography. The encryption (public) key is disclosed, while the decryption (private) key

is kept secret. Inspired by Ralph Merkle’s work [5], the distribution of keys over a public

channel was first made possible by the Diffie-Hellman algorithm in 1976 [6]. One of the

oldest and most widely used public-key cryptosystems is the Rivest-Shamir-Adleman

(RSA) algorithm [7]. In practice, rather than message transmission, RSA is used to

distribute the keys for the less computationally demanding symmetric key cryptography,

enabling high throughput secure data transmission. The security of RSA stems from

the practical difficulty of factoring large prime numbers, which is threatened by the

anticipated advent of quantum computers capable of running Shor’s prime factorization

algorithm [8].

In order to hinder the attacks posed by quantum computers, a new family of quantum-

resistant ciphers has been developed lately in what is known as post-quantum cryptography

(PQC). Another countermeasure is to share the keys using quantum key distribution

(QKD), a physical layer approach that relies on quantum mechanical phenomena to

establish symmetric keys between two authenticated parties as depicted in Figure 1.1.

Unlike PQC, QKD is future-proof, in the sense that its security remains with the
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advancements in hardware and software algorithms [9].

Figure 1.1: The schematic diagram of the communication channels used in QKD, where
the quantum channel is susceptible to Eve’s interference. In contrast, the
authenticated classical channel signal can only be read by Eve.

1.2 QUANTUM KEY DISTRIBUTION (QKD)

QKD relies on the fact that quantum states cannot be observed without altering them, a

concept that came to be known as the no-cloning theorem [10]. The no-cloning theorem,

which originated from James Parks’ work in 1970 [11], dictates that quantum states are

always disturbed when measured and thus cannot be copied. By quantifying the amount

of disturbance and its origins, secure quantum states can be exchanged, from which a

cryptographic key is extracted. The stages of any QKD protocol are as follows

1. Quantum Communication: Preparation, distribution, and measurement of
quantum states.

2. Parameter Estimation: A small subset of Alice’s and Bob’s data is publicly
disclosed to determine the amount of information that could have leaked to Eve.
The communication is aborted if the leaked information is above a certain threshold.

3. Sifting: Public announcements regarding the data by Alice and Bob, which allows
them to obtain an equal size key with a small bit error rate (BER).

4. Error-Correction: The key obtained from the sifting stage is transformed into an
identical pair of keys (𝑘EC) with a smaller size 𝑚 using error-correction techniques.

5. Privacy Amplification: In order to eliminate the information leaked to Eve,
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privacy amplification is performed, which further reduces the size of the key to 𝑛
bits but guarantees the security of the obtained key (𝑘PA) up to a factor 𝜖 . This can
be done through a matrix-vector multiplication operation where the vector is the
error-corrected key (𝑘EC) and the matrix is a Toeplitz (diagonal-constant) [12]

Toeplitz Matrix©­­­­­­­­«

ª®®®®®®®®¬

𝑡𝑛−1 𝑡𝑛 𝑡𝑛+1 . . . 𝑡𝑛+𝑚−2

𝑡𝑛−2 𝑡𝑛−1 𝑡𝑛 . . . 𝑡𝑛+𝑚−3
...

. . .
...

𝑡0 𝑡1 𝑡2 . . . 𝑡𝑛−1

·

𝑘EC©­­­­­­­­«

ª®®®®®®®®¬

𝑒0

𝑒1
...

𝑒𝑚−1

=

𝑘PA©­­­­­­­­«

ª®®®®®®®®¬

𝑝0

𝑝1
...

𝑝𝑛−1

. (1.1)

Figure 1.2: A representation highlighting the nature of the utilized quantum states in
DV-QKD and CV-QKD, where the reception hardware differs for them.

The first conceived QKD protocol is the BB84 discrete-variable quantum key distribution

(DV-QKD), named after its inventors Brassard and Bennett, which encodes the quantum

states in the polarization of light [13]. Regarding how the signal is received, QKD

can be classified into two categories: continuous-variable quantum key distribution

(CV-QKD) and DV-QKD. As portrayed in Figure 1.2, the latter utilizes the discrete

particle nature of light to encode the state, which is received using a single-photon

detector (SPD). DV-QKD is currently more mature than CV-QKD, as it is easier to analyze

using standard mathematical tools and is more heavily investigated [14]. However, the

infinite-dimensional phase space of CV-QKD requires complex mathematical tools, such

as symplectic transformations, making it harder to analyze compared to DV-QKD [15].

Moreover, CV-QKD requires sophisticated digital signal processing (DSP) algorithms

[16].
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Table 1.1: Advantages of utilizing a homodyne detector in the continuous-variable case
instead of a single photon detector (SPD) for discrete-variable (DV) QKD
implementation.

QKD Class Receiver Type Availability Operating Temp. Cost Size
DV Photon Counting Custom-Built Requires Cooling Expensive Bulky
CV Homodyne Detection Commercial Room-Temp. Cheap Small

Despite this, the practical implementation of CV-QKD systems is much more feasible, as

summarized in Table 1.1. Unlike DV-QKD, which requires bulky, expensive, and dead

time-limited single-photon detectors, CV-QKD utilizes compact and relatively

inexpensive coherent receivers that operate at a higher data rate. Moreover, the existing

optical telecommunication infrastructure already uses coherent receivers, making

deploying CV-QKD systems easier [17]. Thus, while DV-QKD is currently more

well-established, the practical advantages of CV-QKD suggest that it may become an

increasingly important technique for QKD.

The most practical class of CV-QKD implementations uses coherent states to encode

information, where non-commuting (therefore non-orthogonal) electric field quadratures

are utilized to transmit information securely over a communication channel. Bymeasuring

the quadratures of the received signals using a homodyne detector, a measurement

distribution is obtained where the expected measurement outcome is unknown due to

Heisenberg’s uncertainty relation for non-commuting observables. Hence, some fixed

error probability is expected, inherent in the system’s design. When Eve attempts to tap

into the signal, an unpreventable increase of error in the receiver will happen due to her

inability to discriminate between the states perfectly.

CV-QKD implementations need continual improvement in bandwidth utilization and

efficient compensation for channel impairments such as time and phase synchronizations.

Figure 1.3 illustrates the achieved results of different experimental efforts where recent

works tend to utilize a separate local oscillator (LO) at the receiver, known as local

local oscillator (LLO). The standard coherent optical communication techniques can be
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Figure 1.3: Achieved experimental result by different research groups with respect to
the secret key rate (SKR), channel length, and local oscillator (LO) choice
[18]–[36].

applied to improve the performance of CV-QKD systems, which entails the development

of DSP algorithms targeting a CV-QKD implementation.

Our research aims to significantly improve the performance of discrete-modulated CV-

QKD implementations through a combination of hardware design, system parameter

optimization, and efficient DSP algorithms. Furthermore, we examine the underlying

assumptions and parameters that impact the security of CV-QKD systems. The subsequent

chapters are organized as follows. Chapter 2 presents the theoretical foundations of

CV-QKD, encompassing the protocol description and security analysis. In Chapter 3, we

discuss the fundamental concepts of coherent optical communications that are essential

for understanding CV-QKD. In Chapter 4, we explore the primary sources of noise in

a typical CV-QKD system. Finally, Chapter 5 delves into the system architecture and

experimental implementation of CV-QKD.
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CHAPTER 2

CONTINUOUS-VARIABLE QKD (CV-QKD)
FUNDAMENTALS

This chapter establishes a theoretical basis for understanding the system representation

and security analysis of CV-QKD and provides an in-depth discussion of the utilized

protocol. Furthermore, the relevant mathematical concepts and tools used in the security

analysis of CV-QKD are covered, including the derivation of the secret key rate and the

study of the security parameters.

2.1 SYSTEM REPRESENTATION

2.1.1 Hilbert Space Formalism

An 𝑁-mode bosonic system can be represented by 𝑁 quantized electromagnetic (EM)

field modes1, where each mode 𝑖 is described by a particular Fock space (F𝑖) that is

spanned by an infinite Fock basis {|0⟩𝑖 , |1⟩𝑖 , · · · , |𝑛⟩𝑖 , · · · }. The Fock state2 |𝑛⟩𝑖 denotes

a quantum state with 𝑛 indistinguishable photons that are present in mode 𝑖. The Fock

space (F𝑖) may be expressed as

F𝑖 =
∞⊕
𝑛=0

H⊗𝑛
𝑖 , (2.1)

whereH⊗𝑛
𝑖
is the 𝑛th tensor power of the single-photon Hilbert space (𝐻⊗1

𝑖
) in mode 𝑖.

An 𝑁-mode bosonic system is represented by the following Hilbert space

H𝑁-mode =

𝑁⊗
𝑖=1

F𝑖

=

𝑁⊗
𝑖=1

( ∞⊕
𝑛=0

H⊗𝑛
𝑖

)
,

(2.2)

1A mode of the EM field corresponds to a specific spatial and temporal wavefunctions, energy, and
polarization.

2The Fock state is also known as the number state.



which is also spanned by an infinite basis |𝑛⟩1 |𝑛⟩2 · · · |𝑛⟩𝑁 ≡ |𝑛1𝑛2 · · · 𝑛𝑁⟩, since each

Fock space (F𝑖) is spanned by an infinite Fock basis [37]. An increase or decrease in

the number of photons in a particular mode 𝑖 is expressed through the creation (𝑎̂†
𝑖
) and

annihilation (𝑎̂𝑖) ladder operators, respectively, as follows

𝑎̂
†
𝑖
|𝑛⟩𝑖 =

√
𝑛 + 1 |𝑛 + 1⟩𝑖 ,

𝑎̂𝑖 |𝑛⟩𝑖 =
√
𝑛 |𝑛 − 1⟩𝑖 .

(2.3)

In the international system of units (SI), the ladder operators can be modeled as a

one-dimensional quantum harmonic oscillator (QHO) given by the following expressions

𝑎̂
†
𝑖
=

1
√

2

(√︂
𝑚𝜔

ℏ
𝑥𝑖 − 𝑗

1
√
𝑚𝜔ℏ

𝑝𝑖

)
[SI], (2.4)

𝑎̂𝑖 =
1
√

2

(√︂
𝑚𝜔

ℏ
𝑥𝑖 + 𝑗

1
√
𝑚𝜔ℏ

𝑝𝑖

)
[SI], (2.5)

where 𝑚 is the particle’s mass and 𝜔𝑖 is the angular frequency of oscillation. The factors

are chosen to cancel the position(𝑥𝑖) and momentum (𝑝𝑖) operators’ dimensions since the

ladder operators are assumed to be dimensionless. The corresponding Hamiltonian of

the system is [38]

𝐻̂ =

𝑁∑︁
𝑖=1

𝐻̂𝑖

=

𝑁∑︁
𝑖=1

ℏ𝜔𝑖

(
𝑎̂
†
𝑖
𝑎̂𝑖 +

1
2

)
.

(2.6)

Since an𝑁-modeCV-QKDmakes use of the infinite-dimensionalHilbert space (H𝑁-mode),

dealing with the density matrix formalism becomes quite cumbersome. Such a density

matrix (𝜌𝑁-mode) is expressed as

𝜌𝑁-mode =

∞∑︁
®𝑚,®𝑛=0

𝜌 ®𝑚,®𝑛 |𝑚1𝑚2 · · ·𝑚𝑁⟩ ⟨𝑛1𝑛2 · · · 𝑛𝑁 | , (2.7)

where ®𝑚 ≡ (𝑚1𝑚2 · · ·𝑚𝑁 ) and ®𝑛 ≡ (𝑛1𝑛2 · · · 𝑛𝑁 ). On the other hand, the phase

space representation for 𝑁 modes has 2𝑁 dimensions only [15], allowing for a simpler
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representation of the states.

2.1.2 Phase Space Formalism

In general, the phase space is established by defining a canonically conjugate pair of

observables (𝑥𝑖, 𝑝𝑖) for each mode 𝑖 of the EM field. Denoting the two quadratures for

each mode collectively as 𝑟𝑖 and congregating them into a signal vector 𝑟 gives

𝑟 = (𝑟1, 𝑟2, · · · , 𝑟2𝑁 )𝑇

= (𝑥1, 𝑝1, 𝑥2, 𝑝2, · · · , 𝑥𝑁 , 𝑝𝑁 )𝑇 ,
(2.8)

where 𝑇 signifies the transpose operation. Equation (2.8) obeys the following bosonic

commutation relation [
𝑟 𝑗 , 𝑟𝑘

]
= 2 𝑗Ω 𝑗 𝑘 ( 𝑗 , 𝑘 = 1, ..., 2𝑁), (2.9)

where Ω 𝑗 𝑘 is a generic element of the symplectic form 2𝑁 × 2𝑁 matrix3 [15]

𝛀 =

𝑁⊕
𝑖=1


0 1

−1 0

 . (2.10)

An equivalent and more convenient description of a CV-QKD system is given by the

Wigner function, which is a quasiprobability distribution defined over a real symplectic

space
(
R2𝑁 ,𝛀

)
, known as the quantum phase space, which transforms the eigenvalues of

the quadrature operators 𝑟 while preserving 𝛀. In order to obtain the expression for the

Wigner function, the Weyl operator is defined as

𝐷̂ (𝜉) ≡ 𝑒 𝑗𝑟
𝑇𝛀𝜉 , (2.11)

where 𝑟 is given by Equation (2.8) and 𝜉 is a 2𝑁-dimensional real vector. The Weyl

operator translates the representation from the infinite-dimensional Hilbert space to the

3The symplectic form (𝛀) defines the real symplectic matrix (S) as

S𝛀ST = 𝛀,

which performs a symplectic transformation that leaves the symplectic form (𝛀) invariant [39].
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2𝑁-dimensional phase space through the following relation

𝜒𝜌𝑁 -mode (𝜉) = Tr
[
𝜌𝑁-mode𝐷̂ (𝜉)

]
,

↕

𝜌𝑁-mode =
1

(2𝜋)2𝑁

∫
𝑑2𝑁𝜉𝜒𝜌𝑁 -mode (−𝜉)𝐷̂ (𝜉),

(2.12)

where 𝜌𝑁-mode is the density matrix defined in Equation (2.7) and 𝜒𝜌𝑁 -mode (𝜉) is the

Wigner characteristic function, the Fourier transform of which defines the sought-after

Wigner function as

𝑊𝜌𝑁 -mode (𝑟) = 1
(2𝜋)2𝑁

∫
R2𝑁

𝑑2𝑁 · 𝜉 · 𝑒− 𝑗𝑟𝑇𝛀𝜉 · 𝜒 (𝜉) , (2.13)

which exhibits a quasi-probability distribution in the phase space representation. In order

to characterize the Wigner function, the first two statistical moments4 of the quantum

state are used, which suffice to characterize Gaussian states fully [39]. The first moment

defines the displacement vector (𝑑) as

𝑑 ≡ ⟨𝑟⟩ = Tr
(
𝑟 𝜌̂𝑁-mode

)
, (2.14)

while the second moment, known as the covariance matrix, is a 2𝑁 × 2𝑁 symmetric

positive semi-definite matrix5 whose elements are given by6

4For a random variable (𝑋) with probability density function (PDF) 𝑓 (𝑥), the 𝑛th moment is defined
as the expectation value of 𝑥𝑛 as following

⟨𝑥𝑛⟩ =
∫ ∞

−∞
𝑥𝑛 𝑓 (𝑥) d𝑥,

where the first and second moments correspond to the mean and the variance, respectively [40].
5An 𝑛 × 𝑛 symmetric real-valued matrix (𝑀) is positive semi-definite if it satisfies the following

condition [41]
𝑣T𝑀𝑣 ≥ 0, ∀𝑣 ∈ R𝑛.

6The anticommutator of two elements is defined as

{𝐴, 𝐵} ≡ 𝐴𝐵 + 𝐵𝐴.
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Γ𝑖 𝑗 =
1
2

〈
{Δ𝑟𝑖,Δ𝑟 𝑗 }

〉
=

1
2

〈
{𝑟𝑖 − ⟨𝑟𝑖⟩, 𝑟 𝑗 − ⟨𝑟 𝑗 ⟩}

〉
=

1
2

[〈
(𝑟𝑖 − ⟨𝑥𝑖⟩)(𝑟 𝑗 − ⟨𝑟 𝑗 ⟩)

+ (𝑟 𝑗 − ⟨𝑟 𝑗 ⟩)(𝑟𝑖 − ⟨𝑟𝑖⟩)
〉]

=
1
2

[〈
𝑟𝑖𝑟 𝑗 + 𝑟 𝑗𝑟𝑖 − 2𝑟𝑖 ⟨𝑟 𝑗 ⟩

− 2𝑥 𝑗 ⟨𝑥𝑖⟩ + 2⟨𝑟𝑖⟩⟨𝑟 𝑗 ⟩
〉]

=
1
2

(
⟨𝑟 𝑗𝑟𝑖⟩ + ⟨𝑟𝑖𝑟 𝑗 ⟩

)
+

〈
−𝑟𝑖 ⟨𝑟 𝑗 ⟩ − 𝑟 𝑗 ⟨𝑟𝑖⟩ + ⟨𝑟𝑖⟩⟨𝑟 𝑗 ⟩

〉
=

1
2

(
⟨𝑟 𝑗𝑟𝑖⟩ + ⟨𝑟𝑖𝑥 𝑗 ⟩

)
− ⟨𝑟𝑖⟩⟨𝑟 𝑗 ⟩.

(2.15)

For the diagonal elements, plugging 𝑗 = 𝑖 gives the variance

Γ𝑖𝑖 = ⟨(𝑟𝑖)2⟩ − ⟨𝑟𝑖⟩2

= 𝜎2
𝑟𝑖
,

(2.16)

while the off-diagonal elements indicate the correlation between quadratures belonging

to different modes.

2.1.3 Coherent States

The coherent state |𝛼⟩, which describes a well-stabilized laser, is defined as the eigenstate

of the annihilation operator (𝑎̂)

𝑎̂ |𝛼⟩ = 𝛼 |𝛼⟩ , (2.17)

where 𝛼 = |𝛼 |𝑒𝑖𝜃 is the complex eigenvalue and ⟨𝛼 |𝛼⟩ = 1. Applying the creation

operator (𝑎̂†) on the coherent state gives

𝑎̂† |𝛼⟩ = 𝛼∗ |𝛼⟩ . (2.18)

The states |𝛼⟩ are not orthogonal since the annihilation operator (𝑎̂) is not Hermitian.
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Moreover, |𝛼⟩ is not an eigenstate of the number operator (𝑁̂) since it does not have

a fixed number of photons. For the coherent state, the Weyl displacement operator is

defined as

𝐷̂ (𝛼) = 𝑒𝛼𝑎̂
†−𝛼∗𝑎̂, (2.19)

where 𝛼 is the magnitude of displacement in phase space. In particular, the vacuum

state (|0⟩) can be displaced into a coherent state (|𝛼⟩) by applying the Weyl displacement

operator as follows

𝐷̂ (𝛼) |0⟩ = 𝑒𝛼𝑎̂
†−𝛼∗𝑎̂ |0⟩

= |𝛼⟩ .
(2.20)

In order to expand |𝛼⟩ in the Fock states, the Baker–Campbell–Hausdorff formula [42] is

utilized, which gives

|𝛼⟩ = 𝑒−|𝛼 |
2/2

∞∑︁
𝑛=0

𝛼𝑛

√
𝑛!

|𝑛⟩ . (2.21)

Note that the coherent states are not orthogonal. For two coherent states |𝛼⟩ and |𝛽⟩,

their inner product gives a nonzero value as following

⟨𝛼 |𝛽⟩ = 𝑒−( |𝛼 |
2+|𝛽 |2)/2

∞∑︁
𝑛=0

(𝛼∗𝛽)𝑛

𝑛!

= 𝑒−( |𝛼 |
2+|𝛽 |2−𝛼∗𝛽)/2,

(2.22)

where the probability is

|⟨𝛼 |𝛽⟩|2 = 𝑒−|𝛼−𝛽 |
2
. (2.23)

In CV-QKD, 𝛼 and 𝛽 are close, making the probability in Equation (2.23) higher, thus

introducing uncertainty in the measurement. In other words, coherent states’ security

depends on their non-orthogonality (nonzero inner product), indicating the inability to

discriminate between them perfectly [15]. As will be discussed later, the variance of

the quadrature operators plays an essential role in CV-QKD protocols. Therefore, it is

of interest to derive its value. Setting the value of 𝑚, 𝜔𝑖, and ℏ in Equation (2.4) and
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Equation (2.5) to unity gives the natural units (NU) representation of the ladder operators

[43]

𝑎̂† =
1
√

2
(𝑥 − 𝑗 𝑝) [NU], (2.24)

𝑎̂ =
1
√

2
(𝑥 + 𝑗 𝑝) [NU], (2.25)

which is equivalent to following relations

𝑥 =
1
√

2

(
𝑎̂† + 𝑎̂

)
[NU], (2.26)

𝑝 =
𝑗
√

2

(
𝑎̂† − 𝑎̂

)
[NU]. (2.27)

Since the uncertainty in the two quadratures is the same for a coherent state [38], they

have the same variance

𝜎2
𝑥 = 𝜎2

𝑝 , (2.28)

which can be found by calculating the following expectation values

⟨𝑥⟩ = ⟨𝛼 | 𝑥 |𝛼⟩

=
1
√

2

[
⟨𝛼 | 𝑎̂† |𝛼⟩ + ⟨𝛼 | 𝑎̂ |𝛼⟩

]
=

1
√

2
(𝛼∗ + 𝛼)

=
1
√

2
[(𝑥 − 𝑗 𝑝) + (𝑥 + 𝑗 𝑝)]

=
√

2𝑥 [NU],

(2.29)

⟨𝑥2⟩ = ⟨𝛼 | 𝑥2 |𝛼⟩

=
1
2
⟨𝛼 | (𝑎̂† + 𝑎̂)2 |𝛼⟩

=
1
2
[
⟨𝛼 | (𝑎̂†)2 |𝛼⟩ + ⟨𝛼 | 𝑎̂2 |𝛼⟩ + ⟨𝛼 | 𝑎̂†𝑎̂ |𝛼⟩ + ⟨𝛼 | 𝑎̂𝑎̂† |𝛼⟩

]
=

1
2
[
𝛼2 + (𝛼∗)2 + 2𝛼∗𝛼 + 1

]
=

1
2
[
(𝑥2 − 𝑝2 + 2 𝑗𝑥𝑝) + (𝑥2 − 𝑝2 − 2 𝑗𝑥𝑝) + 2(𝑥2 + 𝑝2) + 1

]
= 2𝑥2 + 1

2
[NU],

(2.30)
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where the fact that [𝑎̂, 𝑎̂†] = 1 was used. Therefore, the variance can be found as

𝜎2
𝑥 = ⟨𝑥2⟩ − ⟨𝑥⟩2

= 2𝑥2 + 1
2
− 2𝑥2

=
1
2

[NU] .

(2.31)

In shot-noise unit (SNU), the variance of the vacuum noise is normalized to unity by

multiplying Equation (2.26) and Equation (2.27) by
√

2 which gives [15]

𝑥 =

(
𝑎̂† + 𝑎̂

)
[SNU], (2.32)

𝑝 = 𝑗

(
𝑎̂† − 𝑎̂

)
[SNU], (2.33)

with the equivalent representation

𝑎̂
†
𝑖
=

1
2
(𝑥𝑖 − 𝑗 𝑝𝑖) [SNU], (2.34)

𝑎̂𝑖 =
1
2
(𝑥𝑖 + 𝑗 𝑝𝑖) [SNU], (2.35)

which results in the following expectation values

⟨𝑥⟩ = 2𝑥 [SNU], (2.36)

⟨𝑥2⟩ = 4𝑥2 + 1 [SNU], (2.37)

which gives a unity quadrature variance

𝜎2
𝑥 = ⟨𝑥2⟩ − ⟨𝑥⟩2

= 4𝑥2 + 1 − 4𝑥2

= 1 [SNU] .

(2.38)

A depiction of the SNU in phase space for the coherent state is shown in Figure 2.1. A

summary of the different representations of the quadratures and their variance is given in

Table 2.1.
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Figure 2.1: Argand diagram depicting the coherent state in phase space with unity
variance in SNU.

Table 2.1: Representation of the quadratures and the corresponding standard variance 𝜎2

in the international system of units (SI), natural units (NU), and shot-noise
unit (SNU).

SI NU SNU

𝑥

√︃
ℏ

2𝑚𝜔

(
𝑎̂† + 𝑎̂

) 1√
2

(
𝑎̂† + 𝑎̂

) (
𝑎̂† + 𝑎̂

)
𝑝 𝑗

√︃
𝑚𝜔ℏ

2
(
𝑎̂† − 𝑎̂

) 𝑗√
2

(
𝑎̂† − 𝑎̂

)
𝑗
(
𝑎̂† − 𝑎̂

)
𝜎2 ℏ

2
1
2 1

2.2 PROTOCOL

The modulation format of the quantum states can either be continuous, following a

Gaussian distribution, or discrete. From a theoretical point of view, Gaussian modulation

offers better system performance and more understood security proofs. On the other

hand, ideal Gaussian modulation is impractical due to the finite quantization resolution of

the analog-to-digital converter (ADC) and digital-to-analog converter (DAC). Moreover,

as will be outlined, continuous-modulated CV-QKD requires a complex reconciliation
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procedure. Therefore, the chosen scheme is the discrete modulation, which shares many

similarities with the quadrature amplitude modulation (QAM) format used in classical

optical communication, easing the post-processing procedure. Recently, the development

of security proofs for discrete-modulated CV-QKD has been catching up [44], [45],

further motivating the selection of this protocol. For ease of reference, the QKD stages

outlined in Section 1.2 are depicted in Figure 2.2 with a slight modification for the chosen

protocol.

Figure 2.2: Considered stages for the targeted CV-QKD protocol.

2.2.1 Continuous-Modulated CV-QKD

The first developed CV-QKD protocol is the continuous-modulated GG02, named after

Grosshans and Grangier, who invented it in 2002 [46]. In this protocol, Alice starts

by preparing 𝑁 coherent states |𝛼𝑛⟩ = |𝑥𝑛 + 𝑖𝑝𝑛⟩, 𝑛 ∈ {1, · · · , 𝑁} which are Gaussian-

modulated. The quadrature variables 𝑥𝑛 and 𝑝𝑛 are sampled from the independent and

identically distributed (IID) random variables X and P, respectively, which follow a
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Gaussian distribution with zero mean (𝜇) and variance7 𝜎2
𝐴
such that X,P ∼ 𝑁 (0, 𝜎2

𝐴
).

Figure 2.3 illustrates such a distribution in the complex plane, also known as the Argand

(phase space) diagram, for 500 samples8. From the incoming states, Bob only measures

one of the quadratures. The choice of which quadrature (𝑥 or 𝑝) to measure is randomized

using a quantum random number generator (QRNG), as shown in Figure 2.4.

Figure 2.3: Argand (phase space) diagram for 500 randomly generated coherent states
with 𝜇 = 0 and 𝜎 = 15. The 99% confidence interval (CI) of estimating the
standard deviation from the obtained samples 𝜎s = 14.83 is 12.61 ≤ 𝜎 ≤
17.5.

The obtained decimal-valued measurements are discretized into a binary representation,

where the number of binary numbers depends on the resolution of Alice’s and Bob’s

hardware. Then, sifting is done, where Bob informs Alice of his quadrature choices.

Then, Alice discards the 𝑁 quadrature values that Bob did not measure. Next, parameter

estimation is performed, which involves Alice and Bob disclosing a subset of size 𝑘 from

7Recall that the variance 𝜎2
𝑥 for a signal 𝑥 is

𝜎2
𝑥 ≡

〈
(Δ𝑥)2〉 ,

which quantifies the average fluctuation of the signal.
8The number of needed samples to truthfully represent the standard deviation for the normal distribution

is discussed in Appendix D.
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Figure 2.4: Coherent reception configuration where one of the quadratures is randomly
chosen to be measured by adjusting the phase modulator.

their data over an authenticated classical. The disclosed data are used to estimate the

parameters upper bounding Eve’s information, which determines the length 𝑙 of the final

key. Now, Alice and Bob share 𝑚 = 𝑁 − 𝑘 correlated pairs of binary data.

The 𝑚 pairs of data shared by Alice and Bob are not identical. A procedure known as

reconciliation is utilized to correct the errors between the variables. The reconciliation

procedure is called direct (reverse) when only Alice (Bob) communicates to Bob (Alice),

while Bob (Alice) performs the computationally expensive decoding process of the ECC.

Reconciliation allows Alice and Bob to obtain an equal-length bit string with a low

probability of error.

One famous reconciliation method is slice error correction (SEC) reconciliation, which is

a two-stage procedure as seen in Figure 2.5. First, Alice’s and Bob’s continuous variables

are converted to binary values by quantizing them using a slice (quantization) function.

Then, a binary correction protocol is performed where a multilevel coding (MLC) with

multistage decoding (MSD) is used for channel coding while the error correction is done

using low-density parity-check (LDPC) codes [47].

In the quantization step, the slice (quantization) function Q(𝑏) : R→ {0, 1}𝑚 maps the

continuous variables to 𝑚-bit binary numbers. Thus, Q(𝑏) = (Q1(𝑏), · · · ,Q𝑚 (𝑏)) is a

vector of binary slices where Q𝑖 picks up the 𝑖th bit 𝑞𝑖𝑗 from the binary representation
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of 𝑦 𝑗 . Bob then discloses the first 𝑡 slices (Q1(𝑏), · · · ,Q𝑡 (𝑏)) corresponding to the

least significant bits (LSBs). For the remaining 𝑚 − 𝑡 slices, Bob encodes each slice

Q𝑘 (𝑏), 𝑘 ∈ {𝑡 + 1, · · · , 𝑚} and sends it to Alice for the error correction stage. Then,

Alice recovers the bits using her Gaussian variables, Bob’s encoded slices, and the output

of the previous decoder [47].

Figure 2.5: Reverse slice reconciliation using themultilevel coding (MLC)withmultistage
decoding (MSD) scheme for continuous-modulated CV-QKD protocol. In
addition to the known transmitted states, Alice utilizes the output of the
previous decoders to obtain an error-free key.

2.2.2 Discrete-Modulated CV-QKD

The protocol of interest for this work is the discrete-modulated CV-QKD. In the discrete

modulation, Alice prepares 𝑁 coherent states
��𝜓𝑖

𝑎

〉
where 𝑖 ∈ {1, 2, · · · 𝑁}, which are

randomly selected from the set {|𝛼⟩ , |−𝛼⟩ , | 𝑗𝛼⟩ , |− 𝑗𝛼⟩} for some specified 𝛼 ∈ R.

At Bob’s side, for each received state
��𝜓𝑖

𝑏

〉
, Bob measures both quadratures which is

described by the positive operator-valued measurement (POVM) 𝐸𝑦𝑏 = 1
𝜋
|𝑦𝑏⟩ ⟨𝑦𝑏 |,

obtaining the outcome 𝑦𝑖
𝑏
∈ C. The 𝑁 exchanged states are partitioned into two subsets

Ikey and Itest that are used for the sifting and parameter estimation stages, respectively.

In the sifting stage, Alice maps her states
��𝜓𝑘

𝑎

〉
for 𝑘 ∈ Ikey to symbols 𝑆𝑘𝑎 according to
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the following rule

𝑆𝑘𝑎 =



0,
��𝜓𝑘

𝑎

〉
= |𝛼⟩ ,

1,
��𝜓𝑘

𝑎

〉
= | 𝑗𝛼⟩ ,

2,
��𝜓𝑘

𝑎

〉
= |−𝛼⟩ ,

3,
��𝜓𝑘

𝑎

〉
= |− 𝑗𝛼⟩ ,

(2.39)

where the symbols 0, 1, 2, and 3 map to the binary pairs 00, 01, 10, and 11, respectively.

Then, parameter estimation is performed where the small subset of Alice’s and Bob’s

data (Itest) is publicly disclosed to determine the amount of information that could have

leaked to Eve. The communication is aborted if the leaked information is above a certain

threshold. After that, Bob maps the measurements 𝑦𝑘
𝑏
=

��𝑦𝑘
𝑏

��𝑒 𝑗𝜃𝑘𝑏 where 𝑘 ∈ Ikey and

𝜃𝑘
𝑏
∈

[
− 𝜋

4 ,
7𝜋
4

)
to symbols (𝑆𝑘

𝑏
) according to the following rule [44]

𝑆𝑘𝑏 =



0, 𝜃𝑘
𝑏
∈

[
− 𝜋

4 + Δ𝜃 ,
𝜋
4 − Δ𝜃

)
and

��𝑦𝑘
𝑏

�� ≥ Δ𝛼,

1, 𝜃𝑘
𝑏
∈

[
𝜋
4 + Δ𝜃 ,

3𝜋
4 − Δ𝜃

)
and

��𝑦𝑘
𝑏

�� ≥ Δ𝛼,

2, 𝜃𝑘
𝑏
∈

[ 3𝜋
4 + Δ𝜃 ,

5𝜋
4 − Δ𝜃

)
and

��𝑦𝑘
𝑏

�� ≥ Δ𝛼,

3, 𝜃𝑘
𝑏
∈

[ 5𝜋
4 + Δ𝜃 ,

7𝜋
4 − Δ𝜃

)
and

��𝑦𝑘
𝑏

�� ≥ Δ𝛼,

⊥, Otherwise,

(2.40)

where Δ𝜃 and Δ𝛼 are non-negative post-selection parameters in SNU to be optimized for,

and ⊥ signifies a discarded measurement as depicted in Figure 2.6. The minimum

permissible coherent state amplitude (Δ𝛼) distills the weak signals that result in

insignificant shared information between Alice and Bob. Similarly, Δ𝜃 filters out the

high uncertainty regions by setting the maximum permissible phase deviation from the

ideal constellation point. Intuitively, the post-selection scheme can be viewed as an

optimization mechanism between the information leaked to Eve and the mutual

information between Alice and Bob. Both increase as the uncertainty regions are

limited.
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Figure 2.6: The post-selection strategy discards the states existing in the extreme
uncertainty regions (red-colored) that prohibit Alice and Bob from agreeing
on a key. The green regions correspond to the optimal trade-off between
having significant mutual information between Alice and Bob with enough
uncertainty to limit the information leaked to Eve.

2.3 SECURITY ANALYSIS

CV-QKD can be implemented using two equivalent approaches: the entanglement-based

(EB) and the prepare-and-measure (P&M) [48]. The two variations are compared in

Table 2.2. In the P&M implementation, Alice communicates displaced coherent states to

Bob through a Gaussian channel. For the EB version, a two-mode squeezed vacuum state

(TMSVS)9 is prepared by Alice, where she will measure the quadratures of one mode

and sends the other mode to Bob as Figure 2.7 shows. The equivalence between the two

approaches stems from the fact that the partial measurement on the bipartite EB version

(measuring the second mode) can be projected into the P&M states (statistical mixture of

9A TMSVS is a quantum light state with high correlations between its electromagnetic modes.
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coherent states) [49]. From a mathematical point of view, the security analysis is more

straightforward for the EB version. On the other hand, practically, it is much easier to

implement the P&M version. Therefore, in what follows, the security is considered for

the EB version, while the experimental implementation is based on the P&M scheme.

Table 2.2: Comparison between the two approaches to implementing CV-QKD
concerning the nature of the exchanged signal and the complexity of
implementation and analysis.

Approach Prepared Signal Implementation Analysis
Prepare-and-Measure (P&M) Coherent State Simple Complex

Entanglement-Based (EB) Two-Mode Squeezed
Vacuum State (TMSVS) Complex Simple

2.3.1 Entanglement-Based (EB) CV-QKD

The covariance matrix of the TMSVS at Alice’s side is [50]

ΓA =



𝜎2
𝑞

0 𝑍 0

0 𝜎2
𝑞

0 −𝑍

𝑍 0 𝜎2
𝑞

0

0 −𝑍 0 𝜎2
𝑞


=


𝜎2
𝑞
· 𝐼2 𝑍 · 𝜎𝑧

𝑍 · 𝜎𝑧 𝜎2
𝑞
· 𝐼2

 ,
(2.41)

where 𝐼2 =


1 0

0 1

 is the identity matrix, 𝜎𝑧 =


1 0

0 −1

 is Pauli Z matrix, 𝑍 = 𝑓 (𝜎2
𝑞
) is

a correlation factor between the two quadratures that is a function of 𝜎2
𝑞
, which depends

on the distribution of the states, and 𝜎2
𝑞
is the quadrature operators’ variance given by
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Figure 2.7: Schematic diagram of the entanglement-based (EB) CV-QKD protocol where
a two-mode squeezed vacuum state (TMSVS) is prepared, and one is sent to
Bob. Alice and Bob measure both quadratures of their respective mode.

Equation (2.37)

𝜎2
𝑞 = 4𝜎2

A + 1

= 𝜎2
Â + 1

= 2|𝛼 |2 + 1

= 2⟨𝑛⟩ + 1 [SNU],

(2.42)
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where 𝜎2
A and 𝜎

2
Â
are the modulation variance of the quadrature components (𝑥 and

𝑝) and operators (𝑥 and 𝑝) in the P&M scheme, respectively, 𝛼 is the coherent state

amplitude, and ⟨𝑛⟩ is the average number of photons per symbol at the channel input.

The TMSVS received by Bob has the following covariance matrix

ΓAB =


(
𝜎2
Â
+ 1

)
· 𝐼2

√
𝑇tot𝑍 · 𝜎𝑧

√
𝑇tot𝑍 · 𝜎𝑧

[
1 + 𝑇tot𝜎

2
Â
+ 𝜉tot

]
· 𝐼2

 [SNU], (2.43)

where 𝜉tot is the total excess noise referred to at the input of Bob’s equipment (after the

channel), and 𝑇tot is the total transmittance incorporating the following loss sources

𝑇tot = 𝑇ch · 𝑇hyb · 𝜂det, (2.44)

for a detector with quantum efficiency 𝜂det and channel transmittance 𝑇ch given by

𝑇ch = 10−
𝐿ch ·𝛼ch

10 , (2.45)

for a channel of length 𝐿ch with an attenuation rate 𝛼ch, while 𝑇hyb depends whether or

not a 3 dB coupler is utilized in the optical hybrid

𝑇hyb =


1, Homodyne (Single Quadrature)

𝑇3 dB ≈ 0.5, Heterodyne (Two Quadratures)
, (2.46)

whereas the correlation factor for the Gaussian-distributed coherent states is given in

SNU by, respectively, the following matrices

𝑍Gaus =
√︃
𝜎4
𝑞
− 1

=

√︂(
𝜎2
Â
+ 1

)2
− 1

=

√︃
𝜎4
Â
+ 2𝜎2

Â

=

√︂
𝜎2
Â

(
𝜎2
Â
+ 2

)
[SNU],

(2.47)
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which closely approximates that of the discrete modulation scheme for small variances

[50]. Plugging Equation (2.47) in Equation (2.43) gives

ΓGausAB =


(
𝜎2
Â
+ 1

)
· 𝐼2

√︂
𝑇tot · 𝜎2

Â

(
𝜎2
Â
+ 2

)
· 𝜎𝑧√︂

𝑇tot · 𝜎2
Â

(
𝜎2
Â
+ 2

)
· 𝜎𝑧

[
1 + 𝑇tot𝜎

2
Â
+ 𝜉tot

]
· 𝐼2

 [SNU]. (2.48)

The post-measurement state for the homodyne and heterodyne cases are given by [37]

ΓHomAB|b =


(
𝜎2
Â
+ 1 −

𝜎2
Â

(
𝜎2
Â
+2

)
𝑇tot

(
𝜎2
Â
+𝜉

)
+1

)
· 𝐼2 0

0
(
𝜎2
Â
+ 1

)
· 𝐼2

 [SNU], (2.49)

ΓHetAB|b =



(
𝜎2
Â
+ 1 −

𝜎2
Â

(
𝜎2
Â
+2

)
𝑇tot

(
𝜎2
Â
+𝜉

)
+2

)
· 𝐼2 0

0

(
𝜎2
Â
+ 1 −

𝜎2
Â

(
𝜎2
Â
+2

)
𝑇tot

(
𝜎2
Â
+𝜉

)
+2

)
· 𝐼2


[SNU]. (2.50)

2.3.2 Security Under Collective Attacks

The secret key fraction (SKF) is defined as following

𝑅SK ≡ 𝑁sec

𝑁exch
, (2.51)

where 𝑁sec and 𝑁exch are the number of obtained secure bits and exchanged quantum

states, respectively. For Gaussian-modulated states, the SKF in the asymptotic limit

against collective attacks is given by

𝑅CASK = 𝐼 (𝐴 : 𝐵) − 𝑆(𝐵 : 𝐸), (2.52)

where 𝐼 (𝐴 : 𝐵) is the Shannon mutual information between the classical data of Alice

and Bob after error correction, and 𝑆(𝐵 : 𝐸) is the Holevo bound between Eve’s quantum

state and Bob’s error-corrected classical data. The Holevo bound is an upper limit

on the amount of classical information that Eve can extract from the quantum system.

Security against collective attacks entails that Eve’s capability is limited only by quantum

mechanics. In practice, the error correction procedure is not perfect and is quantified by
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the reconciliation efficiency (𝛽) as following

𝑅
CA, prac
SK = 𝛽𝐼 (𝐴 : 𝐵) − 𝑆(𝐵 : 𝐸). (2.53)

From Equation (2.48), the quadrature operators variance at Bob’s side is

𝜎2
𝑞B

= 𝑇tot𝜎
2
Â︸︷︷︸

Signal

+ 1 + 𝜉tot︸ ︷︷ ︸
Noise

[SNU], (2.54)

where the signal and noise components are accordingly labeled. Therefore, the signal-to-

noise ratio (SNR) is

SNR =
𝑇tot𝜎

2
Â

1 + 𝜉tot
. (2.55)

For heterodyne measurement, the Shannon mutual information is given by

𝐼 (𝐴 : 𝐵) = log2 (1 + SNR)

= log2

(
1 +

𝑇tot𝜎
2
Â

1 + 𝜉tot

)
,

(2.56)

which is twice that of the homodyne case.

The Holevo information for discrete-modulated CV-QKD can be upper bounded by

utilizing the fact that the Holevo bound is maximized for Gaussian states. Therefore,

security proofs for Gaussian modulation can be used to prove the security of discrete-

modulated CV-QKD given that the signal power does not exceed a few SNUs [45]. The

binary entropy is defined as

𝑔(𝑥) =
(
𝑥 + 1

2

)
log2

(
𝑥 + 1

2

)
−

(
𝑥 − 1

2

)
log2

(
𝑥 − 1

2

)
, (2.57)

which is used to compute the Holevo bound as following

𝑆(𝐵 : 𝐸) = 𝑔 (𝜈1) + 𝑔 (𝜈2) − 𝑔 (𝜈3) , (2.58)
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where 𝜈1, 𝜈2, and 𝜈3 are the symplectic eigenvalues of the covariance matrix (ΓGausAB ) in

Equation (2.48). To estimate the SKF, a simple form for the total excess noise (𝜉tot) is

defined as follows10

𝜉tot = 𝑇tot · 𝜉exc + 𝜉el [SNU], (2.59)

and the following parameters are assumed for heterodyne measurement:

• 𝛼ch = 0.25 dB/km,

• 𝜉exc = 0.05 SNU,

• 𝜉el = 0.15 SNU,

• 𝜂det = 0.7,

• 𝛽 = 0.85,

where the resulting SKFs for difference channel lengths and signal powers are visualized

in Figure 2.8.

Figure 2.8: A 3D heatmap depicting the secret key fraction (SKF) as a function of the
modulation variance (𝜎2

Â
) and channel length. Each channel length has a

corresponding optimal signal power.

10The sources of noise in a practical settings are analyzed in Chapter 4.
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In practice, the modulation variance (𝜎2
Â
) needs to be optimized for each channel length

to achieve the best system performance. Moreover, limiting the excess noise (𝜉exc) is

essential to operate the system at long channel lengths. Since the formulated security

proofs is for the continuous-modulated CV-QKD, care must be taken when setting the

symbol power for the discrete modulation case. In [51], it was illustrated that the security

of quadrature phase-shift keying (QPSK)-modulated CV-QKD matches the Gaussian

modulation case for modulation variances not exceeding 1.5 SNU, given an excess noise

𝜉exc = 0.001 SNU. This corresponds to around 0.75 photons/symbol for 50 MBd symbol

rate. Therefore, the maximum power for the targeted QPSK-modulated CV-QKD system

should be limited depending on the excess noise (𝜉exc) and the channel transmittance

(𝑇tot). Alternatively, the security framework by [44] may be utilized, where a Matlab

package was developed.
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CHAPTER 3

COHERENT OPTICAL COMMUNICATION
FUNDAMENTALS

The first conceived optical communication links used what is known as the intensity-

modulation and direct-detection (IM/DD) scheme, where the information is encoded

solely in the intensity degree of freedom of light, like in the on-off keying (OOK)

modulation format. With the advancement of the available hardware, schemes utilizing

a higher bandwidth with other degrees of freedom (e.g., phase or polarization) were

possible. Such methods that use complex signals to transmit information fall under a

communication class known as coherent optical communication.

Classical coherent optical communication technologies can improve the performance of

CV-QKD systems in more than one way. By applying a filter on the transmitted signal,

classical coherent optical communication makes better use of the available bandwidth.

With some modification, a similar outcome can be achieved for CV-QKD. Moreover,

compensation for different channel effects can be incorporated into CV-QKD systems

with techniques typically used in classical coherent optical communication. The ability

to compensate for channel effect and utilize the available bandwidth more efficiently

allows for a higher rate CV-QKD implementation.

3.1 COHERENT OPTICAL DETECTION

A coherent communication system uses a laser to generate an optical carrier signal

modulated with the information transmitted using an in-phase and quadrature (I/Q)

modulator. As discussed in Appendix C, the I/Qmodulator consists of twoMach–Zehnder

interferometers (MZIs) that are controlled by electrical signals representing the amplitude

and phase information of the modulating signal. Then, the modulated signal is transmitted



over the optical channel to the receiver, where it is detected and digitally processed to

recover the original information.

3.1.1 Balanced Receivers

180◦ Optical Hybrid

Figure 3.1: Coherent receiver configuration for the 180◦ hybrid.

Coherent detection allows for measuring the complex amplitude of an optical signal

mixed with a continuous-wave (CW) local oscillator (LO) as shown in Figure 3.1. The

electric fields of the incoming signal of interest (𝐸s) and the LO signal (𝐸LO) can be

expressed in phasor representation as

𝐸s(𝑡) = 𝐴s(𝑡)𝑒 𝑗 [𝜔s𝑡+𝜃s (𝑡)] , (3.1)

𝐸LO(𝑡) = 𝐴LO𝑒
𝑗 [𝜔LO𝑡+𝜃LO (𝑡)] , (3.2)

where 𝐴s(𝑡) and 𝐴LO are the real-valued complex amplitudes, 𝜔s and 𝜔LO are the angular

frequencies, whereas 𝜃s(𝑡) and 𝜃LO(𝑡) represent the unknown phase noise. Note that the

amplitude of the LO (𝐴LO) is kept constant. The real signals are

Es(𝑡) = Re
{
𝐴s(𝑡)𝑒 𝑗 [𝜔s𝑡+𝜃s (𝑡)]

}
= 𝐴s(𝑡)cos[𝜔s𝑡 + 𝜃s(𝑡)],

(3.3)

ELO(𝑡) = Re
{
𝐴LO𝑒

𝑗 [𝜔LO𝑡+𝜃LO (𝑡)]
}

= 𝐴LOcos[𝜔LO𝑡 + 𝜃LO(𝑡)] .
(3.4)
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The power of the signals is taken to be their mean square (MS) values1 as following

𝑃s(𝑡) = [Es(𝑡)]MS

=
𝐴s(𝑡)2

2
,

(3.5)

𝑃LO = [ELO(𝑡)]MS

=
𝐴2
LO
2

.

(3.6)

The 2 × 2 3-dB optical coupler is a four-terminal device with the following scattering

matrix [52]

T2×2 =
1
√

2


1 𝑗

𝑗 1

 , (3.7)

where the cross-coupling components (= 𝑗) are phase shifted by 90◦ with respect to the

direct pass components (= 1). To construct a 180◦ optical hybrid, a −90◦ phase shifter is

added to the bottom arm. Utilizing the transfer matrix in Equation (3.7), the output ports

in Figure 3.1 are given by

𝐸1(𝑡) =
1
√

2
[𝐸s(𝑡) + 𝑗𝐸LO(𝑡)]

=
1
√

2

{
𝐴s(𝑡)𝑒 𝑗 [𝜔s𝑡+𝜃s (𝑡)] + 𝐴LO𝑒

𝑗 [𝜔LO𝑡+𝜃LO (𝑡)+ 𝜋
2 ]

}
,

(3.8)

𝐸2(𝑡) =
1
√

2
[ 𝑗𝐸s(𝑡) + 𝐸LO(𝑡)] · 𝑒−

𝜋
2 =

1
√

2
[𝐸s(𝑡) − 𝑗𝐸LO(𝑡)]

=
1
√

2

{
𝐴s(𝑡)𝑒 𝑗 [𝜔s𝑡+𝜃s (𝑡)] + 𝐴LO𝑒

𝑗 [𝜔LO𝑡+𝜃LO (𝑡)− 𝜋
2 ]

}
.

(3.9)

Note that 𝐸1(𝑡) and 𝐸2(𝑡) have a relative phase shift of 180◦, which explains the naming

of the structure in Figure 3.1. The ratio of the generated photocurrent (𝐼𝑝ℎ) to the incident

1The MS of a signal 𝑓 (𝑡) with period 𝑇 is defined as

[ 𝑓 (𝑡)]MS = 1
𝑇

∫ 𝑇

0
𝑓 (𝑡)2𝑑𝑡.
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power (𝑃𝑖𝑛𝑐) defines the responsivity (𝑅) of a photodiode as [52]

𝑅 =
𝐼ph

𝑃inc

= 𝜂
𝑒

ℏ𝜔inc
,

(3.10)

where 𝜂 is the photodiode quantum efficiency, 𝑒 is the electron charge, ℏ is the reduced

Planck’s constant, and 𝜔inc is the angular frequency of the incident signal. When 𝐸1(𝑡)

and 𝐸2(𝑡) are incident on the photodiodes, the generated photocurrents are

𝐼1(𝑡) = 𝑅𝑃1(𝑡)

= 𝑅 [E1(𝑡)]MS ,
(3.11)

𝐼2(𝑡) = 𝑅𝑃2(𝑡)

= 𝑅 [E2(𝑡)]MS ,
(3.12)

where the real signals are given by

E1(𝑡) = Re [𝐸1(𝑡)]

=
1
√

2

[
𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) + 𝐴LOcos

(
𝜔LO𝑡 + 𝜃LO(𝑡) +

𝜋

2

)]
=

1
√

2
[𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) − 𝐴LOsin (𝜔LO𝑡 + 𝜃LO(𝑡))] ,

(3.13)

E2(𝑡) = Re [𝐸2(𝑡)]

=
1
√

2

[
𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) + 𝐴LOcos

(
𝜔LO𝑡 + 𝜃LO(𝑡) −

𝜋

2

)]
=

1
√

2
[𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) + 𝐴LOsin (𝜔LO𝑡 + 𝜃LO(𝑡))] .

(3.14)
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which results in the following photocurrents2

𝐼1(𝑡) =
𝑅

2
[
𝐴s(𝑡)2 + 𝐴2

LO

− 2𝐴LO𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) sin (𝜔LO𝑡 + 𝜃LO(𝑡))
]

=
𝑅

2
{
𝐴s(𝑡)2 + 𝐴2

LO − 𝐴LO𝐴s(𝑡) [sin ((𝜔LO − 𝜔s)𝑡 + 𝜃LO(𝑡) − 𝜃s(𝑡))

+ sin ((𝜔LO + 𝜔s) 𝑡 + 𝜃LO(𝑡) + 𝜃s(𝑡))]
}

=
𝑅

2
[
𝐴s(𝑡)2 + 𝐴2

LO − 𝐴LO𝐴s(𝑡)sin (𝜔IF𝑡 + Δ𝜃 (𝑡))
]
,

(3.15)

and similarly

𝐼2(𝑡) =
𝑅

2

[
𝐴s(𝑡)2 + 𝐴2

LO + 𝐴LO𝐴s(𝑡)sin
(
𝜔IF𝑡 + Δ𝜃 (𝑡)

) ]
, (3.16)

where 𝜔IF ≡ 𝜔LO − 𝜔s is the intermediate frequency (IF) and Δ𝜃 (𝑡) ≡ 𝜃LO(𝑡) − 𝜃s(𝑡).

The omitted high-frequency component corresponds to the sum-frequency term, usually

filtered out by the subsequent radio frequency (RF) circuit. In order to eliminate the

DC component, the photodiodes are connected in a balanced configuration, generating a

current (𝐼 (𝑡)) given by their difference

𝐼 (𝑡) = 𝐼1(𝑡) − 𝐼2(𝑡)

= −𝑅𝐴LO𝐴s(𝑡)sin
(
𝜔IF𝑡 + Δ𝜃 (𝑡)

)
.

(3.17)

90◦ Optical Hybrid

Another configuration for balanced detection is the 90◦ hybrid which utilizes four 3-dB

couplers and a 90◦ phase shifter as shown in Figure 3.2. The scattering matrix of the

2The MS is applied on single-tone components. For the mixing terms, direct multiplication is
performed.
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Figure 3.2: Coherent receiver configuration for the 90◦ hybrid.

configuration is as follows

T4×4 =


T2×2 0

0 T2×2




1 0 0 0

0 0 0 1

0 1 0 0

0 0 𝑗 0



T2×2 0

0 T2×2



=
1
√

2


T2×2 0

0 T2×2




1 𝑗 0 0

0 0 𝑗 1

𝑗 1 0 0

0 0 𝑗 −1


=

1
2



1 𝑗 −1 𝑗

𝑗 −1 𝑗 1

𝑗 1 −1 − 𝑗

−1 𝑗 𝑗 −1


.

(3.18)

The corresponding outputs of the structure are

𝐸1(𝑡)

𝐸2(𝑡)

𝐸3(𝑡)

𝐸4(𝑡)


= T4×4



𝐸s(𝑡)

0

𝐸LO(𝑡)

0


, (3.19)
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which results in the following expressions when evaluated

𝐸1(𝑡) =
1
2
[𝐸s(𝑡) − 𝐸LO(𝑡)] , (3.20)

𝐸2(𝑡) =
𝑗

2
[𝐸s(𝑡) + 𝐸LO(𝑡)] , (3.21)

𝐸3(𝑡) =
𝑗

2
[𝐸s(𝑡) + 𝑗𝐸LO(𝑡)] , (3.22)

𝐸4(𝑡) = −1
2
[𝐸s(𝑡) − 𝑗𝐸LO(𝑡)] , (3.23)

with the real representations being

E1(𝑡) = Re[𝐸1(𝑡)]

=
1
2
[𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) − 𝐴LOcos (𝜔LO𝑡 + 𝜃LO(𝑡))] ,

(3.24)

E2(𝑡) = Re[𝐸2(𝑡)]

= −1
2
[𝐴s(𝑡)sin (𝜔s𝑡 + 𝜃s(𝑡)) + 𝐴LOsin (𝜔LO𝑡 + 𝜃LO(𝑡))] ,

(3.25)

E3(𝑡) = Re[𝐸3(𝑡)]

= −1
2
[𝐴s(𝑡)sin (𝜔s𝑡 + 𝜃s(𝑡)) + 𝐴LOcos (𝜔LO𝑡 + 𝜃LO(𝑡))] ,

(3.26)

E4(𝑡) = Re[𝐸4(𝑡)]

= −1
2
[𝐴s(𝑡)cos (𝜔s𝑡 + 𝜃s(𝑡)) + 𝐴LOsin (𝜔LO𝑡 + 𝜃LO(𝑡))] ,

(3.27)

and the corresponding photocurrents are

𝐼1(𝑡) = 𝑅 [E1(𝑡)]MS

=
𝑅

4

[
𝐴s(𝑡)2 + 𝐴2

LO

− 2𝐴s(𝑡)𝐴LOcos
(
𝜔s𝑡 + 𝜃s(𝑡)

)
cos

(
𝜔LO𝑡 + 𝜃LO(𝑡)

) ]
,

(3.28)

𝐼2(𝑡) = 𝑅 [E2(𝑡)]MS

=
𝑅

4

[
𝐴s(𝑡)2 + 𝐴2

LO

+ 2𝐴s(𝑡)𝐴LOsin
(
𝜔s𝑡 + 𝜃s(𝑡)

)
sin

(
𝜔LO𝑡 + 𝜃LO(𝑡)

) ]
,

(3.29)
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𝐼3(𝑡) = 𝑅 [E3(𝑡)]MS

=
𝑅

4

[
𝐴s(𝑡)2 + 𝐴2

LO

+ 2𝐴s(𝑡)𝐴LOsin
(
𝜔s𝑡 + 𝜃s(𝑡)

)
cos

(
𝜔LO𝑡 + 𝜃LO(𝑡)

) ]
,

(3.30)

𝐼4(𝑡) = 𝑅 [E4(𝑡)]MS

=
𝑅

4

[
𝐴s(𝑡)2 + 𝐴2

LO

+ 2𝐴s(𝑡)𝐴LOcos
(
𝜔s𝑡 + 𝜃s(𝑡)

)
sin

(
𝜔LO𝑡 + 𝜃LO(𝑡)

) ]
.

(3.31)

Thus, the output currents in Figure 3.2 are3

𝐼𝐼 (𝑡) = 𝐼1(𝑡) − 𝐼2(𝑡)

= −𝑅𝐴s(𝑡)𝐴LO
2

cos
(
𝜔IF𝑡 + Δ𝜃 (𝑡)

)
,

(3.32)

𝐼𝑄 (𝑡) = 𝐼3(𝑡) − 𝐼4(𝑡)

= −𝑅𝐴s(𝑡)𝐴LO
2

sin
(
𝜔IF𝑡 + Δ𝜃 (𝑡)

)
,

(3.33)

which represents the I/Q components of the photocurrent.

3.1.2 Regimes of Operation

Let the bandwidth of the incoming signal (𝐸s(𝑡)) be 𝐵s. Then, three possible operation

regimes are the homodyne, heterodyne, and intradyne.4

Homodyne

Homodyne detection refers to the condition𝜔IF = 0. For the 180◦ hybrid, the photocurrent

in Equation (3.17) becomes

𝐼 (𝑡) = −𝑅𝐴LO𝐴s(𝑡)sin
(
Δ𝜃 (𝑡)

)
, (3.34)

3The trigonometric identities 2cos(𝛼)cos(𝛽) = cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽), 2sin(𝛼)sin(𝛽) = cos(𝛼 −
𝛽) − cos(𝛼 + 𝛽), and 2sin(𝛼)cos(𝛽) = sin(𝛼 − 𝛽) − sin(𝛼 + 𝛽) were used.

4In the CV-QKD literature, the case when using a 180◦ hybrid with 𝜔IF = 0 is known as homodyne
detection. For all the other cases, where both quadratures are simultaneously measured, they are referred
to as heterodyne detection [15].
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which represents the imaginary part of the signal. Consequently, the incoming signal’s

quadrature (Q) component is known. In order to measure the in-phase (I) component, a

phase shift of 𝜋/2 has to be introduced. In other words, depending on the chosen phase,

only one quadrature can be measured in the 180◦ hybrid structure. On the other hand,

both quadratures of the incoming signal can be measured in the 90◦ hybrid configuration.

In order to realize the homodyne regime, the phases of the incoming signal and the

reference laser have to be synchronized using an optical phase-locked loop (OPLL). The

OPLL is generally complex to implement [53], making it not desirable to operate the

receiver in the homodyne regime.

Heterodyne

When the signal and LO are not derived from the same source, the detection is said to

be heterodyne. For the case when |𝜔IF | > 𝐵s/2, as illustrated in Figure 3.3, the whole

spectrum is accessible by both optical hybrid structures, making it possible for both

quadratures to be simultaneously measured. The downside of this regime is that the

uncertainty principle limits the information gained in simultaneously measuring the two

quadratures and the noise acquired when downsampling the signal to the baseband [54].

In the range where 0 < |𝜔IF | < 𝐵s/2, the positive and negative images of the signal

partially overlap, necessitating the use of information from both quadratures for signal

retrieval. In this scenario, the 90◦ hybrid becomes essential as it enables the recovery of

complete signal information, whereas the 180◦ hybrid only provides one quadrature. A

notable advantage of this regime is that it eliminates the need for an OPLL, leveraging

DSP techniques to compensate for any frequency offset. This makes it an optimal choice

for signal processing.

The homodyne operation regime is the current popular choice in coherent optical

communication[55]. The signal and LO originate from the same laser in this work.

Thus, their frequencies should be matched in an ideal situation indicating a homodyne
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Figure 3.3: The operation regimes based on the relationship between 𝜔IF and the
bandwidth 𝐵s of the incoming signal. The green color represents the
homodyne regime, while the remaining two cases depict different scenarios
within the heterodyne regime.

operation regime. However, slight frequency drifts and the different propagation path

lengths can cause the operation to be in the heterodyne regime.

3.2 DIGITAL SIGNAL PROCESSING (DSP)

The utilized signal processing stack is shown in Figure 3.4, where each block will be

elaborated on in the following subsections.

3.2.1 Modulation

Quantum Signal

As discussed in Section 2.2, the discrete modulation schemes are implemented for the

quantum signal. Specifically, M-ary phase-shift keying (M-PSK) and M-ary quadrature

amplitude modulation (M-QAM) with probabilistic constellation shaping (PCS) are

chosen. The M-PSK coherent states are given by

|𝜓M-PSK⟩ =
���𝛼𝑒 𝑗 (2𝑘+1)𝜋/𝑀

〉
, (3.35)
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Figure 3.4: The signal processing suite at used at the transmitter (Tx) and receiver (Rx).

where 𝑘 ∈ {0, 1, · · · , 𝑀 − 1}, 𝑀 is the number of used symbols, and 𝛼 is the coherent

state amplitude whose magnitude-squared is given by Equation (2.42) as

|𝛼 |2 = ⟨𝑛s⟩

=
𝜎2
A′

2

= 2𝜎2
A,

(3.36)

where 𝜎2
A′ and 𝜎2

A are the modulation variance of the quadrature operator and variable,

respectively, and ⟨𝑛s⟩ is the average number of photons of the signal. Without any noise,

the constellation diagrams of the ideal M-PSK modulation are depicted in Figure 3.5.

The density matrix of the M-PSK modulation is expressed as

𝜌M-PSK =
1
𝑀

𝑀−1∑︁
𝑘=0

|𝛼M-PSK⟩ ⟨𝛼M-PSK |

=
1
𝑀

𝑀−1∑︁
𝑘=0

���𝛼𝑒 𝑗 (2𝑘+1)𝜋/𝑀
〉 〈

𝛼𝑒 𝑗 (2𝑘+1)𝜋/𝑀
��� . (3.37)

In M-QAM, the two quadratures need to be completely independent to prevent Eve from

gaining information on one quadrature from the other. Thus, the constellation diagram
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(a) 4-PSK (QPSK) (b) 64-PSK

Figure 3.5: The constellation diagram of Alice’s ideal M-PSK modulated quantum signal
for (a) M = 4, known as QPSK, and (b) M = 64 with the quadrature variable
variance being 𝜎2

A = 4, corresponding to 𝛼 = 2
√

2.

should be square-shaped, corresponding to 𝑀 being a power of four. The M-QAM

coherent states are expressed as��𝜓M-QAM〉
=

���𝐴maxquad (𝑥 + 𝑗 𝑝)
〉
, (3.38)

where 𝐴maxquad =
𝛼√
2
is the maximum amplitude a quadrature can have. Thus, the possible

quadrature points 𝑥 and 𝑝 are normalized. Namely, 𝑥, 𝑝 ∈ {−1,−1 + 𝑆, · · · , 1 − 𝑆, 1}

for a spacing 𝑆 = 2√
𝑀−1
between the coordinates. The ideal constellation diagrams of

M-QAM are shown in Figure 3.6. Note that the 4-QAM is equivalent to the 4-phase-shift

keying (PSK), also known as QPSK.

The independence of the two quadratures of M-QAM is expressed by the following

probability mass function (PMF) relation

𝑃𝑋+ 𝑗𝑃 (𝑥 + 𝑗 𝑝) = 𝑃𝑋 (𝑥)𝑃𝑃 (𝑝), (3.39)

where 𝑃𝑋 (𝑥) and 𝑃𝑃 (𝑝) are the PMFs of the X and P quadratures, respectively. To

approximate the continuous Gaussian states which possess the desired security aspects,
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(a) 4-QAM (b) 64-QAM

Figure 3.6: The constellation diagram of Alice’s ideal M-QAM modulated quantum
signal for (a) M = 4 and (b) M = 64 with the quadrature variable variance
being 𝜎2

A = 4, corresponding to 𝛼 = 2
√

2.

the utilized PCS for the two quadratures is the discrete Boltzmann-Maxwell distribution

with the following PMFs [56]

𝑃𝜈 (𝑥) =
𝑒−𝜈𝑥

2∑︁
𝑥∈X

𝑒−𝜈𝑥2
, (3.40)

where 𝜈 > 0 is the free parameter. Thus, the PMFs of the M-QAM coherent state is

expressed by

𝑃𝑋+ 𝑗𝑃 (𝑥 + 𝑗 𝑝) = 𝑒−𝜈(𝑥
2+𝑝2)

√
𝑀
2∑︁

𝑥, 𝑝=−
√
𝑀
2

𝑒−𝜈(𝑥2+𝑝2)

. (3.41)

In practice, the free parameter 𝜈 is tuned to achieve optimal performance. The constellation

diagram of the PCS 64-QAM following the discrete Boltzmann-Maxwell distribution is

shown in Figure 3.7 for multiple values of 𝜈. When 𝜈 = 0, the PCSM-QAM reduces to the

traditional M-QAM modulation since all the coordinates will have an equal probability.
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Figure 3.7: The constellation diagrams of 105 probabilistic constellation-shaped 64-QAM
signals using different values for the free parameter (𝜈) with the quadrature
variable variance being 𝜎2

A = 4, corresponding to 𝛼 = 2
√

2.

Pilot Tone

As will be discussed in Section 5.1, a pilot tone is needed to establish a phase reference

since the quantum signal is feeble. One scheme of generating the pilot is known as
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single-sideband suppressed-carrier (SSB-SC) modulation. Since the same information is

carried by both bands, suppressing the other band in single-sideband (SSB) modulation

is spectrally and power efficient. Moreover, reducing the power results in less crosstalk

between the quantum and pilot signals. Another advantage that SSB modulation offers is

immunity against dispersion [57].

Furthermore, for the heterodyne regime of operation
(�� 𝑓LO − 𝑓sig

�� < 𝐵sig/2
)
, not

suppressing the other band will result in RF fading since the two bands will self-interfere

after being projected to almost the same RF frequency [30], [58], [59]. The crosstalk

between the carrier and the quantum signal at the receiver can be eliminated using the

suppressed-carrier (SC) technique [30], [58], which is implemented along with SSB, the

so-called SSB-SC modulation. Suppressing the carrier would also enhance the pilot

tone’s SNR, a desirable outcome.

3.2.2 Upsampling

The initial form of the modulated signal is a series of values representing the symbols

in the discrete-time domain. A QPSK modulated signal is obtained from 13,106

pseudorandomly generated bits that are mapped as displayed in Table 3.1.

Table 3.1: Followed convention in mapping the bits pair to the QPSK symbols.

Bits 00 01 10 11
Symbol -1-j -1+j 1-j 1+j

The original discrete-time representation is shown in Figure 3.8 along with its normalized

5 and raw frequency responses. In practice, multiple samples represent each symbol

through the upsampling operation. Considering that the original symbol period is

𝑇
orig
sym , the upsampling by 𝐿 operation increases the symbol period to 𝑇ussym = 𝐿𝑇

orig
sym .

5The normalized frequency 𝜔 is related to the traditional raw frequency Ω by the following relation

𝜔 =
Ω

𝑓 Txs
,

where 𝑓 Txs is the sampling frequency of the DAC.
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(a)

(b)

(c)

Figure 3.8: The (a) original discrete form of a random QPSK modulated signal for ten
symbols, (b) its normalized frequency response, and (c) the raw frequency
response assuming a sampling frequency 𝑓 Txs = 250 MSa/s.

Equivalently, the original symbol rate 𝑓
orig
sym is reduced to 𝑓 ussym = 𝑓

orig
sym /𝐿. To upsample

a signal with a factor 𝐿, a two-step procedure is performed. First, zero-padding is
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(a)

(b)

(c)

Figure 3.9: The first stage of the upsampling procedure involves zero-padding the
modulated signal of Figure 3.8 in the time domain, as shown in (a). In
contrast, (b) and (c) illustrate the frequency domain representation of the
signal, highlighting the duplication of the original frequency component after
being compressed.
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implemented by inserting 𝐿 − 1 zeros between each two consecutive symbols. The

zero-padding operation is represented by

𝑥zp [𝑛] =


𝑥orig

[
𝑛
𝐿

]
for 𝑛 = 𝑘𝐿, 𝑘 ∈ Z,

0 otherwise,
(3.42)

where 𝑥orig and 𝑥zp are the original and zero-padded versions of the signal, respectively.

The zero-padded version of Alice’s QPSK signal is shown in Figure 3.9 for 𝐿 = 5. For a

DAC with sampling frequency 𝑓 Txs = 250 MSa/s, the resulting symbol period is

𝑇ussym = 𝐿𝑇
orig
sym

=
𝐿

𝑓 Txs

=
5

250 × 106

= 20 ns,

(3.43)

which corresponds to 50 MBd. The second stage of upsampling is an interpolation

process, where the inserted zeros are given a value that depends on the neighboring

samples using a filter. From the frequency domain perspective, each inserted zero results

in an additional spectral image of the original signal, which must be filtered using a

low-pass filter (LPF). The unwanted 𝐿−1 spectral images are omitted by setting the cutoff

frequency of the LPF to 𝜔c = 𝜋
𝐿
[60]. In order to completely suppress the interference

between channels utilizing neighboring frequency ranges, a phenomenon known as inter-

carrier interference (ICI), the utilized LPF should have a rectangular-shaped spectrum.

The frequency response of the ideal LPF is given by

𝐻idealLPF (𝜔) =


1 for 𝜔 ≤ 𝜔c,

0 for 𝜔 > 𝜔c,

(3.44)

which cannot be realistically implemented since it is an infinite impulse response

(IIR) filter, requiring an infinite number of coefficients to realize it6. On the other

6The reason is that the inverse discrete-time Fourier transform (IDTFT) of the ideal LPF 𝐻idealLPF (𝜔) is
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hands, finite impulse response (FIR) filters are utilized in practice such as the one in

Figure 3.10. Utilizing the LPF of Figure 3.10, upsampling is achieved after interpolating

the zero-padded signal as shown in Figure 3.11.

Figure 3.10: The frequency response of a finite impulse response (FIR) filter where
𝜔c ≈ 𝜋

5 . The FIR filter was designed using the Kaiser–Bessel window
method with the passband (PB) and stopband (SB) edges being 0.17𝜋 and
0.23𝜋 rad/sample, respectively.

3.2.3 Pulse Shaping

The time-domain analog to the ICI phenomenon is inter-symbol interference (ISI), where

adjacent pulses interfere with each other due to their extending parts in the time-domain

representation. For ISI suppression, a pulse-shaping filter is utilized to limit the pulse

duration, which can be simultaneously used as an interpolator for the second stage of

upsampling. The time-domain analog of the ideal LPF in Equation (3.44) will result in

a sinc function

F −1 {
𝐻idealLPF (𝜔)

}
=

1
2𝜋

∫ 𝜋

−𝜋
𝐻idealLPF (𝜔) 𝑒 𝑗𝜔𝑛d𝜔

=
1

2𝜋

∫ 𝜔c

−𝜔c
𝑒 𝑗𝜔𝑛d𝜔

=
1

2𝜋
𝑒 𝑗𝜔c𝑛 − 𝑒− 𝑗𝜔c𝑛

𝑗𝑛

=
sin (𝜔c𝑛)

𝜋𝑛

=
𝜔c

𝜋
sinc (𝜔c𝑛) ,

which is not absolutely summable since
∞∑︁

𝑛=−∞

�� 𝜔c
𝜋
sinc (𝜔c𝑛)

�� ≮ ∞.
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ISI since the discrete-time Fourier transform (DTFT) of the ideal rectangular pulse is not

absolutely summable 7. Conversely, a rectangular pulse shape signal from an ideal pulse

shaping filter, which does not cause any ISI, will result in ICI. A compromise between

the two filter extremes is what is done in practice.

After the upsampling operation, each symbol is represented by 𝐿 samples with a total

duration of 𝑇ussym as discussed in Section 3.2.2. The matched filter must correctly detect

only a single sample on the receiver side where the ISI did not affect it. The remaining

𝐿 − 1 samples are permitted to be affected by ISI since they will be discarded 8. Such

filters, which tolerate ISI in specific regions, are said to satisfy the Nyquist ISI criterion.

One widely used filter which satisfies the Nyquist ISI criterion is the raised-cosine (RC)

filter. The following impulse response function defines the RC filter [60]

ℎRC [𝑛] =



1, for 𝑛 = 0,

𝜋
4 sinc

(
𝜋

2𝛼
)
, for |𝑛| = 𝐿

2𝛼 ,

sinc
(
𝜋𝑛
𝐿

) cos( 𝜋𝛼𝑛
𝐿 )

1−( 2𝛼𝑛
𝐿 )2 , otherwise,

(3.45)

7Similar to the previous analysis, the DTFT of the rectangular pulse violates the absolute summability
condition

F {Π𝑁 [𝑛]} =
∞∑︁

𝑛=−∞
Π𝑁 [𝑛] 𝑒− 𝑗𝜔𝑛

=

𝑁∑︁
𝑛=−𝑁

𝑒− 𝑗𝜔𝑛

=
𝑒 𝑗𝜔𝑁 − 𝑒− 𝑗𝜔 (𝑁+1)

1 − 𝑒− 𝑗𝜔

=
���𝑒− 𝑗 𝜔

2

[
𝑒 𝑗𝜔(𝑁+ 1

2 ) − 𝑒− 𝑗𝜔(𝑁+ 1
2 )

]
���𝑒− 𝑗 𝜔

2

(
𝑒 𝑗 𝜔

2 − 𝑒− 𝑗 𝜔
2

)
=

sin
(
𝜔

(
𝑁 + 1

2

))
sin

(
𝜔
2
) ,

where the closed form of the geometric series was used

𝑛f−1∑︁
𝑛=𝑛i

𝑟𝑛 =
𝑟𝑛i − 𝑟𝑛f

1 − 𝑟
.

8The matched filter is discussed in Section 3.2.6.
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where L’Hôpital’s rule was used for the indeterminate cases and 𝛼 is the roll-off

factor (ROF), a measure of the excess bandwidth of the RC filter. In continuous-time

representation, Equation (3.45) is expressed as

ℎRC (𝑡) =



1, for 𝑡 = 0,

𝜋
4 sinc

(
𝜋

2𝛼
)
, for |𝑡 | = 𝑇ussym

2𝛼 ,

sinc
(

𝜋𝑡
𝑇ussym

) cos
(
𝜋𝛼𝑡

𝑇ussym

)
1−

(
2𝛼𝑡
𝑇ussym

)2 , otherwise.

(3.46)

As evident from Figure 3.12, the RC filter satisfies the Nyquist ISI criterion. The output

of the RC filter has a bandwidth of

𝐵ps = (1 + ROF)𝐵orig. (3.47)

In addition to the pulse shaping properties, the RC filter is simultaneously used as an

LPF in the second stage of the upsampling operation. The frequency response of the RC

filter is given by [60]

𝐻RC ( 𝑓 ) =



𝑇ussym, | 𝑓 | ≤ 1−𝛼
2𝑇ussym

,

𝑇ussym
2

[
1 + cos

(
𝜋𝑇ussym
𝛼

(
| 𝑓 | − 1−𝛼

2𝑇ussym

))]
, 1−𝛼

2𝑇ussym
< | 𝑓 | ≤ 1+𝛼

2𝑇ussym
,

0, otherwise.

(3.48)

The impulse and frequency responses for multiple ROF values is shown in Figure 3.13.

At 𝛼 = 0, the RC filter becomes the ideal sinc filter of Equation (3.44). As will be

explained in Section 3.2.6, in practice the RC filter is split into two equivalent filters

known as root raised-cosine (RRC) filters. The RRC filter perform the functionality

of the pulse shaping and matched filtering at the transmitter (Tx) and receiver (Rx),

respectively. The result of passing the zero-padded signal through the RRC filter is
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shown in Figure 3.14 which is obtained through the following convolution operation

𝑥ps [𝑛] = 𝑥zp [𝑛] ∗ ℎRRC [𝑛]

=

∞∑︁
𝑚=−∞

𝑥zp [𝑚] ℎRRC [𝑛 − 𝑚] .
(3.49)

3.2.4 Up-Conversion

Before converting the signal to the analog domain, a digital up-converter (DUC) is used

to up-convert the signal from base-band to the IF, which serves two main purposes. First,

the low-frequency noise of the electronics is avoided [61]. Moreover, it enables further

multiplexing of the quantum signal and pilot tone in the frequency degree of freedom.

Considering a DAC with sampling frequency 𝑓 Txs = 250 MSa/s, the possible digital

up-conversion is limited by the bandwidth of the pulse-shaped signal (𝐵ps) as following

𝜔maxuc = 1 −
𝐵ps

𝑓 Txs
Rad/Sample. (3.50)

Evaluating for 𝑓 Txs = 250 MSa/s, 𝐵orig = 50 MHz for a 50 MBd symbol rate, and 0.4

ROF gives

𝜔maxuc = 1 − (1 + 0.4) · 50
250

= 0.72 Rad/Sample,
(3.51)

which corresponds to the following raw frequency value

Ωmaxuc =
𝜔maxuc

2
· 𝑓 Txs

=
0.72

2
· 250 × 106

= 90 MHz.

(3.52)

Figure 3.15 shows the maximum possible frequency shift as a function of the ROF. To

allow for the entire range of the ROF needed in its optimization procedure, the frequency

up-conversion is set to Ωuc = 75 MHz, corresponding to a normalized frequency domain
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value given by

𝜔uc = 2𝜋 · Ωuc
𝑓 Txs

= 2𝜋
75

250

= 0.6𝜋 Rad/Sample,

(3.53)

which defines the sinusoidal tones used to digitally shift the frequency of the pulse-shaped

signal

𝑥uc [𝑛] = Re
{
𝑥ps [𝑛]

}
· cos (𝜔uc𝑛) − Im

{
𝑥ps [𝑛]

}
· sin (𝜔uc𝑛) . (3.54)

The up-converted signal is shown in Figure 3.16 where the signal is also mirrored in the

negative frequency half.

3.2.5 Down-Conversion

The digitized received signal (𝑥rx [𝑛]) is down-converted to base-band frequency using a

digital down-converter (DDC). The ADC sampling frequency ( 𝑓 Rxs ) is set to 1.25 GSa/s,

ten times the Nyquist frequency of the transmitted signal 𝑓 TxN = 𝑓 Txs /2 = 125 MHz,

corresponding to the highest existing frequency component. To achieve a frequency

down-conversion of Ωdc = 75 MHz, the needed normalized frequency shift differs from

that of the Tx

𝜔dc = 2𝜋 · Ωdc
𝑓 Rxs

= 2𝜋
75

1.25 × 103

= 0.12𝜋 Rad/Sample.

(3.55)

The down-converted signal shown in Figure 3.17 is given by

𝑥dc [𝑛] = Re{𝑥rx [𝑛]} · cos (𝜔dc𝑛) − Im{𝑥rx [𝑛]} · sin (𝜔dc𝑛) , (3.56)

which results in two images centered at ±2Ωdc that are omitted using an image-rejection

LPF. Similar to the pulse-shaping filter being used for interpolation, the matched filter
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performs the needed low-pass filtering.

3.2.6 Matched Filtering

An LPF is needed to suppress the high-frequency noise and interference from the

incoming signal on the Rx side. However, the LPF should be matched to the pulse

shaping filter at the Tx to prevent ISI. By splitting the RC filter into two equivalent

sub-filters, the RRC filters, ISI suppression can be maintained while achieving the desired

LPF functionalities at the Tx and Rx. The frequency response of the RRC filter is

obtained by taking the square-root of the RC filter frequency response in Equation (3.48)

𝐻RRC ( 𝑓 ) =



√︁
𝑇ussym, | 𝑓 | ≤ 1−𝛼

2𝑇ussym
,√︁

𝑇ussym cos
(
𝜋𝑇ussym

2𝛼

(
| 𝑓 | − 1−𝛼

2𝑇ussym

))
, 1−𝛼

2𝑇ussym
< | 𝑓 | ≤ 1+𝛼

2𝑇ussym
,

0, otherwise,

(3.57)

where the trigonometric identity 1 + cos (2𝑥) = 2 cos2 (𝑥) was used. The corresponding

impulse response of the RRC filter is given by [60]

ℎRRC [𝑛] =



1√
𝐿

[
1 + 𝛼

(
4
𝜋
− 1

)]
, for 𝑛 = 0,

𝛼√
2𝐿

[(
1 + 2

𝜋

)
sin

(
𝜋

4𝛼
)
+

(
1 − 2

𝜋

)
cos

(
𝜋

4𝛼
) ]
, for |𝑛| = 𝐿

4𝛼 ,

√
𝐿

𝜋𝑛

[
1−( 4𝛼𝑛

𝐿 )2
] [

sin
(
𝜋𝑛
𝐿
(1 − 𝛼)

)
+ 4𝛼𝑛

𝐿
cos

(
𝜋𝑛
𝐿
(1 + 𝛼)

) ]
, otherwise,

(3.58)

where L’Hôpital’s rule was used for the indeterminate cases. The continuous-time

representation of Equation (3.58) is

ℎRRC (𝑡) =



1√
𝑇ussym

[
1 + 𝛼

(
4
𝜋
− 1

)]
, for 𝑡 = 0,

𝛼√
2𝑇ussym

[(
1 + 2

𝜋

)
sin

(
𝜋

4𝛼
)
+

(
1 − 2

𝜋

)
cos

(
𝜋

4𝛼
) ]
, for |𝑡 | = 𝑇ussym

4𝛼 ,

√
𝑇ussym

𝜋𝑡

[
1−

(
4𝛼𝑡
𝑇ussym

)2
] [

sin
(

𝜋𝑡
𝑇ussym

(1 − 𝛼)
)
+ 4𝛼𝑡

𝑇ussym
cos

(
𝜋𝑡
𝑇ussym

(1 + 𝛼)
)]

, otherwise.

(3.59)
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Unlike for RC filters, RRC pulses do not display the zero crossings behavior at integer

multiples of the symbol period (𝑇ussym) as shown in Figure 3.18. Therefore, RRC filters

do not satisfy the Nyquist no-ISI criterion except when using a pair of them, which is

effectively an RC filter. The impulse and frequency responses for multiple ROF values is

shown in Figure 3.19.

Similar to Equation (3.49), matched filtering is performed by convolving the RRC impulse

response in Equation (3.58) with the down-converted signal (𝑥dc [𝑛])

𝑥mf [𝑛] = 𝑥dc [𝑛] ∗ ℎRRC [𝑛]

=

∞∑︁
𝑚=−∞

𝑥dc [𝑚] ℎRRC [𝑛 − 𝑚] ,
(3.60)

where the corresponding outcome is shown in Figure 3.20.

3.2.7 Downsampling

Depending on the sampling rate of the ADC, there will be 𝑀 − 1 excess samples which

need to be omitted. The downsampling by 𝑀 operation is done by skipping samples as

following

𝑥ds [𝑛] = 𝑥mf [𝑀𝑛] . (3.61)

For a receiver with sampling frequency 𝑓 Rxs = 1.25 GSa/s and symbol period 𝑇ussym = 20

ns, 𝑀 is given by

𝑀 =
𝑇ussym

𝑇Rxs

= 𝑇ussym · 𝑓 Rxs

= (20 × 10−9) · (1.25 × 109)

= 25 Samples/Symbol.

(3.62)

The resulting downsampled by 25 signal is shown in Figure 3.21, where the sampling

point which maximizes the variance was chosen. Figure 3.22 shows the phasor diagram
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of the original (𝑥orig [𝑛]) and retrieved symbols (𝑥ds [𝑛]). Compared with the previously

chosen ROF = 0.4, optimizing the ROF gave a better outcome for ROF = 0.416, as seen

in Figure 3.23. The penalty in Figure 3.23 has been defined such that it is directly and

linearly proportional to how far away the samples are from the ideal constellation points.

3.2.8 Demodulation

Each sample of the downsampled signal (𝑥ds [𝑛]) represents a QPSK symbol, which is

mapped back to the considered bits pair representation of Table 3.1.

3.2.9 Practical Implementation

The required DSP algorithms for coherent communication and CV-QKD share many

similarities, with the primary difference being their optimization objective. Both aim to

maximize the mutual information between the Tx and Rx signals. However, in CV-QKD,

the optimization objective also includes limiting the leaked information to Eve as defined

by the Holevo bound.

For CV-QKD, the DSP algorithms will be designed according to the following objectives.

The upsampling factor will be set according to the desired baud rate and the DAC

sampling frequency. A higher filter span is desirable for the pulse shaping filter because

the ideal filter version is IIR. However, since the considered signals have a finite length,

convolving them with a high-order filter will worsen the undesirable boundary effects.

Therefore, an appropriate filter span must be selected to balance the ISI suppression and

boundary effect mitigation properties. The pulse shaping filter ROF and the up-conversion

frequency are optimized to enhance the system performance while being upper-limited

by the Nyquist frequency of the utilized DAC.
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(a)

(b)

(c)

Figure 3.11: The result of interpolating the zero-padded signal shown in Figure 3.9 is
presented in (a), where the originally zero-valued samples have been replaced
with interpolated values that are calculated based on the neighboring non-
zero samples. This process effectively increases the sampling rate and
improves the signal quality. The effect of the low-pass filtering, which is
applied during the interpolation process, can be observed in the frequency
domain representation shown in (b) and (c), where the higher frequency
components are suppressed, leading to a smoother signal spectrum.
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Figure 3.12: Consecutive raised-cosine (RC) pulses with roll-off factor (ROF) of 0.5
demonstrate the zero inter-symbol interference (ISI) criterion, where only a
single one has a peak at multiples of the symbol period (𝑇ussym), while the
rest are zero.

(a)

(b)

Figure 3.13: The (a) impulse and (b) frequency response of a raised-cosine (RC) filter
for multiple roll-off factor (ROF) values.
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(a)

(b)

(c)

Figure 3.14: The zero-padded QPSK symbols of Figure 3.9 after pulse shaping using a
root raised-cosine (RRC) filter with 0.4 roll-off factor (ROF). The result is
similar to Figure 3.11, where (a) the samples are interpolated in the time
domain and (b-c) low-pass filtering is performed in the frequency domain.
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Figure 3.15: The maximum value for the up-conversion process limited by the sampling
frequency of the digital-to-analog converter (DAC) 𝑓 Txs = 250 MSa/s and
the signal original bandwidth 𝐵orig = 50 MHz as a function of the root
raised-cosine (RRC) filter roll-off factor (ROF).
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(a)

(b)

(c)

Figure 3.16: The pulse-shaped signal shown in Figure 3.14 is frequency up-converted,
and the resulting signal exhibits sharp transitions in the discrete-time
domain, as shown in (a). These transitions are caused by the high-frequency
components, which were up-converted from the baseband. The frequency-
domain representations shown in (b) and (c) illustrate the up-converted
signal components, which contribute to the sharp transitions observed in
(a).
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(a)

(b)

(c)

Figure 3.17: The up-converted signal shown in Figure 3.16 is down-converted to a lower
frequency range, resulting in a discrepant discrete-time signal as shown in
(a), which does not match the pulse-shaped signal shown in Figure 3.14. This
discrepancy is caused by the presence of two unwanted images centered at
twice the down-conversion frequency, as illustrated in the frequency-domain
representations shown in (b) and (c). These unwanted images should be
filtered out by a low-pass filter (LPF).
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Figure 3.18: Consecutive RRC pulses do not satisfy the zero ISI criterion, where only a
single one has a peak at multiples of the symbol period (𝑇ussym), while the
rest not necessarily equal to zero.

(a) Impulse Response

(b) Frequency Response

Figure 3.19: The (a) impulse and (b) frequency response of an RRC filter for multiple
ROF values.
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(a)

(b)

(c)

Figure 3.20: The frequency down-converted symbols of Figure 3.17 after being subjected
to matched filtering using a root raised-cosine (RRC) filter. The time-
domain representation of the resulting signal shown in (a) exhibits a smooth
variation, which is due to the RRC filter’s suppression of high-frequency
components. The frequency-domain representations shown in (b) and (c)
illustrate the limited spectrum of the signal after the matched filtering, with
significant attenuation of the high-frequency components.
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(a)

(b)

(c)

Figure 3.21: After downsampling the matched-filtered signal of Figure 3.20, the retrieved
symbols. The time-domain representation of the resulting signal in (a)
exhibits the QPSK nature of the symbols, with the signal occupying only
two values (±1). The frequency-domain representations shown in (b) and
(c) illustrate the baseband spectrum of the down-sampled signal, which
occupies the entire frequency range due to the downsampling operation
stretching the spectrum.
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Figure 3.22: A phase diagram comparing the constellation points of the transmitted (Tx)
and received (Rx) symbols for two roll-off factor (ROF) values. For the
considered simulation, the higher ROF value results in a better performance.

Figure 3.23: Optimizing the roll-off factor (ROF) value involves minimizing the penalty
function, which is designed to have a small value for highly spread-out
constellation points.
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CHAPTER 4

CV-QKD NOISE SOURCES

One of the critical challenges to maintaining the operation in the quantum regime is that

the shot noise of the system should dominate over all other sources of noise. Therefore,

it is of interest to model the different sources of noise that will affect the performance of

the system. Since measurements are given as a voltage in practice, Equation (2.54) is

reexpressed as

𝜎̄2
𝑞B

= 𝑇tot𝜎̄
2
Â + 𝑁0 + 𝜉tot [V2], (4.1)

where 𝑁0 is the shot noise variance (discussed in Section 4.1) and a total noise 𝜉tot that

can be broken down into the following terms

𝜉tot = 𝑇tot
(
𝜉A + 𝜉exc

)
+ 𝜉B [V2], (4.2)

where the components 𝜉A and 𝜉B are due to Alice’s and Bob’s imperfect hardware,

respectively, and 𝜉exc is excess noise attributed to the channel, Eve, and other unaccounted

for sources. The excess noise is taken to be at the beginning of the channel since this is

the optimal point of attack for Eve. The hardware imperfections result in the following

noise

𝜉A = 𝜉RINs + 𝜉DAC [V2], (4.3)

𝜉B = 𝜉RINLO + 𝜉det + 𝜉ADC [V2], (4.4)

where 𝜉RINs and 𝜉RINLO (discussed in Section 4.2) are the relative intensity noise (RIN) of

the prepared signal and the utilized LO, respectively, 𝜉det is the detection noise (discussed

in Section 4.3), while 𝜉DAC and 𝜉ADC (discussed in Section 4.4) are the quantization error

due to the finite resolution of the DAC and ADC, respectively.

In the following sections, most of the excess noise analysis are based on [50], with a



slight variation in some of them.

4.1 SHOT NOISE

The shot noise variance, 𝑁0, comes from the fundamental uncertainty in measuring the

coherent state, where Poissonian statistics1 govern photons’ arrival time to the coherent

detectors. In practice, all the system parameters are normalized with respect to the shot

noise variance, giving it a unity value in the SNU formalism. The shot noise is manifested

in the fluctuations of the generated photocurrent (Δ𝐼ph (𝑡)), which is expressed as

𝐼ph (𝑡) = ⟨𝐼ph⟩ + Δ𝐼ph (𝑡) , (4.5)

which is passed through a load of resistance 𝑅L, giving a time-varying power component

due to the fluctuating current

𝑃SN (𝑡) =
[
Δ𝐼ph (𝑡)

]2
𝑅L. (4.6)

The current fluctuation variance
[
Δ𝐼ph

]2 is given by2[
Δ𝐼ph (𝜔)

]2
= 2𝑒𝐵⟨𝐼ph⟩, (4.7)

where 𝑒 is the electron charge and 𝐵 ≡ Δ𝜔 is the bandwidth of the fluctuating current.

As expected from the Poisson statistics of the photocurrent, the photocurrent variance[
Δ𝐼ph (𝜔)

]2 is directly proportional to its average value ⟨𝐼ph⟩. Plugging Equation (4.7)

in Equation (4.6) gives

𝑃SN (𝜔) = 2𝑒𝐵𝑅L⟨𝐼ph⟩, (4.8)

which is considered as white noise, since it is independent of the frequency. However, in

1The Poisson distribution gives the probability of 𝑛 events occurring in a specific spatial or temporal
interval given that 𝑁av events happen on average as

𝑃𝑛 =
𝑁𝑛
av · 𝑒−𝑁av

𝑛!
.

2The derivation of Equation (4.7) is performed in Appendix A.
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practice, the used detector is able to capture the shot noise statistics up to a maximum

rate of about 𝐵D = 1/𝜏D, where 𝜏D is the period between successive samples. A

typical outcome when measuring a beam of light with a photodetector of bandwidth

𝐵D is illustrated in Figure 4.1, where the frequency-dependent pink noise is due to the

electronics driving the laser as well as the mechanical vibrations in the laser cavity mirror

[38]. In order to suppress the low-frequency classical noise, a balanced detector can be

used.

Figure 4.1: The power spectrum of the variance of the generated photocurrent due to a
light source with low-frequency classical noise.

4.2 RELATIVE INTENSITY NOISE (RIN)

4.2.1 Signal

For a signal with power 𝑃s(𝑡), the RIN is defined as [62]

RINs ≡
𝑆𝜎2

𝑃s

⟨𝑃s⟩2 , (4.9)

where ⟨𝑃s⟩ is the average power and 𝑆𝜎2
𝑃s
is the power spectral density (PSD)3 of the

power fluctuation. That is, 𝑆𝜎2
𝑃s
is the power variance per 1 Hz. For a signal of bandwidth

3The definition of the PSD is given by Equation (A.7) in Appendix A.
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𝐵s, the power variance is

𝜎2
𝑃s

= 𝐵s · 𝑆𝜎2
𝑃s

= 𝐵s · RINs · ⟨𝑃s⟩2,

(4.10)

where Equation (4.9) was utilized. The average power of the signal can be expressed in

terms of the average number of photons (⟨𝑛s⟩) as following

⟨𝑃s⟩ =
ℎ 𝑓s · ⟨𝑛s⟩

𝜏s
, (4.11)

where ℎ is Planck’s constant, 𝑓s is the frequency of the signal, and 𝜏s is the duration of

the signal pulse. In terms of the creation (𝑎̂†) and annihilation (𝑎̂) operators, the photon

number operator 𝑛̂ is

𝑛̂ = 𝑎̂†𝑎̂. (4.12)

As in Equation (2.34) and Equation (2.35), the creation (𝑎̂†) and annihilation (𝑎̂) operators

can be expressed in terms of the quadrature operators 𝑥 and 𝑝 in SNU as following

𝑎̂
†
𝑖
=

1
2
(𝑥𝑖 − 𝑗 𝑝𝑖) [SNU], (4.13)

𝑎̂𝑖 =
1
2
(𝑥𝑖 + 𝑗 𝑝𝑖) [SNU], (4.14)
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which when plugged into Equation (4.12) give4

𝑛̂ =
1
4
(𝑥 − 𝑗 𝑝) (𝑥 + 𝑗 𝑝)

=
1
4

[
𝑥2 + 𝑝2 − 𝑗 (𝑝𝑥 − 𝑥𝑝)

]
=

1
4

[
𝑥2 + 𝑝2 − 𝑗 [𝑝, 𝑥]

]
=

1
4
[
𝑥2 + 𝑝2 − 𝑗 · 2 𝑗 [���*−1

𝑎̂, 𝑎̂†]
]

=
1
4

(
𝑥2 + 𝑝2 − 2

)
.

(4.15)

Thus, the variance in the average number of photons (𝜎2
⟨𝑛s⟩) is

5

𝜎2
⟨𝑛s⟩ = 𝜎2

𝑛̂ =
1
42𝜎

2
𝑥2+𝑝2

=
1

16

[
𝜎2
𝑥2 + 𝜎2

𝑝2

]
=

1
8

[
𝜎4
𝑥 + 𝜎4

𝑝

]
=

1
4
𝜎4
𝑥 ,

(4.16)

where the variance of the two quadratures of the coherent state are assumed to be the

same. Utilizing Equation (4.11) and Equation (4.16), the power variance (𝜎2
𝑃s
) is

𝜎2
𝑃s

=

(
ℎ 𝑓s

𝜏s

)2
𝜎2
⟨𝑛s⟩ =

(
ℎ 𝑓s

2𝜏s

)2
𝜎4
𝑥 . (4.17)

4Equation (2.32) and Equation (2.33) were used to derive the following relation

[𝑝, 𝑥] = 𝑝𝑥 − 𝑥𝑝 = 𝑗
[
(𝑎̂† − 𝑎̂) (𝑎̂† + 𝑎̂) − (𝑎̂† + 𝑎̂) (𝑎̂† − 𝑎̂)

]
= 𝑗

[(
��𝑎̂
†2 −��̂𝑎

2 + 𝑎̂†𝑎̂ − 𝑎̂𝑎̂†
)
−

(
��𝑎̂
†2 −��̂𝑎

2 − 𝑎̂†𝑎̂ + 𝑎̂𝑎̂†
)]

= 2 𝑗 [𝑎̂†, 𝑎̂] .

5For a zero-mean random variable (𝑋), its variance can be expressed as

𝜎2
𝑋 = ⟨𝑋2⟩ − ⟨𝑋⟩2 = ⟨𝑋2⟩,

and the variance of its square is

𝜎2
𝑋2 = ⟨𝑋4⟩ − ⟨𝑋2⟩2 = ⟨𝑋4⟩ −

(
𝜎2
𝑋

)2
= 2

(
𝜎2
𝑋

)2
,

where ⟨𝑋4⟩ = 3
(
𝜎2
𝑋

)2 [63].
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Therefore, the variance in the quadrature due to the RIN can be expressed as

𝜎2
𝑥,RINs =

2𝜏s
ℎ 𝑓s

𝜎𝑃s

=
2𝜏s
ℎ 𝑓s

√︁
𝐵s · RINs⟨𝑃s⟩

=
2��𝜏s
�
�ℎ 𝑓s

√︁
𝐵s · RINs�

�ℎ 𝑓s · ⟨𝑛s⟩
��𝜏s

= 2
√︁
𝐵s · RINs⟨𝑛s⟩.

(4.18)

From Equation (2.42), the average number of photons (⟨𝑛s⟩) can be expressed in terms

of the variance of the quadrature operators (𝜎2
𝐴′) as

⟨𝑛s⟩ =
𝜎2
𝐴′

2
= 2𝜎2

𝐴, (4.19)

which when plugged into Equation (4.18) gives the excess noise due to the RIN of the

transmitted signal

𝜎2
𝑥,RINs ≡ 𝜉RINs = 4𝜎2

𝐴

√︁
𝐵s · RINs . (4.20)

4.2.2 Local Oscillator (LO)

In balanced homodyne detection, the difference photon number operator (Δ𝑛̂) for a

coherent state is given by6

Δ𝑛̂ = |𝛼LO | [− sin(𝜃)𝑥 + cos(𝜃)𝑝] , (4.21)

where 𝜃 is the phase of the LO. Taking the variance of Equation (4.21) gives

𝜎2
Δ𝑛̂ =

〈
(Δ𝑛̂)2〉 − ⟨Δ𝑛̂⟩2

=
〈
|𝛼LO |2

〉 [〈
𝑥2〉 sin2 𝜃 +

〈
𝑝2〉 cos2 𝜃

− sin 𝜃 cos 𝜃 (⟨𝑥𝑝⟩ + ⟨𝑝𝑥⟩)]

− ⟨|𝛼LO |⟩2 [⟨𝑥⟩ sin 𝜃 + ⟨𝑝⟩ cos 𝜃]2 .

(4.22)

6The derivation of Equation (4.21) is performed in Appendix B.
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since 𝑥 and 𝑝 are independent with respect to |𝛼LO |. Consider the phase of the LO to be

𝜃 = − 𝜋
2 , giving

𝜎2
Δ𝑛̂ =

〈
|𝛼LO |2

〉 〈
𝑥2〉 − ⟨|𝛼LO |⟩2 ⟨𝑥⟩2

=

(
𝜎2
|𝛼LO | + ⟨|𝛼LO |⟩2

) 〈
𝑥2〉 − ⟨|𝛼LO |⟩2 ⟨𝑥⟩2

=

(
𝜎2
|𝛼LO | + ⟨|𝛼LO |⟩2

) 〈
𝑥2〉

=

(
𝜎2
|𝛼LO | + ⟨|𝛼LO |⟩2

)
𝜎2
𝑥 .

(4.23)

where ⟨𝑥⟩ is set to zero [50]. Another way to express the variance of the photon number

difference operator is by considering that the LO’s RIN is contained in the variance of 𝑥,

such that |𝛼LO | is constant which gives

𝜎2
Δ𝑛̂ = |𝛼LO |2𝜎2

𝑥

= |𝛼LO |2
(
𝜎2
𝑥,RINLO + 𝜎2

𝑥,RINLO

)
,

(4.24)

where 𝜎2
𝑥,RINLOis due to the LO’s RIN, while 𝜎

2
𝑥,RINLO

is caused by all other sources.

Consequently, Equation (4.23) is reexpressed as

𝜎2
Δ𝑛̂ =

(
𝜎2
|𝛼LO | + ⟨|𝛼LO |⟩2

)
𝜎2
𝑥,RINLO

. (4.25)

Equating Equation (4.24) and Equation (4.25) gives

|𝛼LO |2
(
𝜎2
𝑥,RINLO +��

���
𝜎2
𝑥,RINLO

)
=

(
𝜎2
|𝛼LO | +�����⟨|𝛼LO |⟩2

)
𝜎2
𝑥,RINLO

−→ 𝜎2
𝑥,RINLO =

𝜎2
|𝛼LO |

|𝛼LO |2
𝜎2
𝑥,RINLO

.

(4.26)

To find the effect of the LO amplitude fluctuation on the number of photons, the

relationship between their variances needs to be derived. As already established, the

expectation value of the photon number is the magnitude squared of the coherent state

amplitude

⟨𝑛LO⟩ = |𝛼LO |2. (4.27)
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Taking the partial derivative of Equation (4.27) gives

𝜕⟨𝑛LO⟩
𝜕 |𝛼LO |

= 2|𝛼LO |, (4.28)

resulting in the following relation between small differences of the coherent state

amplitude and the photon number expectation

𝛿⟨𝑛LO⟩ = 2|𝛼LO | · 𝛿 |𝛼LO |, (4.29)

which when squared gives the variances relation as

𝜎2
⟨𝑛LO⟩ = 4|𝛼LO |2𝜎2

|𝛼LO | . (4.30)

From Equation (4.11), the average number of photons is

⟨𝑛LO⟩ =
𝜏LO ⟨𝑃LO⟩

ℎ 𝑓LO
= |𝛼LO |2, (4.31)

with the variance being

𝜎2
⟨𝑛LO⟩ =

(
𝜏LO

ℎ 𝑓LO

)2
𝜎2
𝑃LO

=

(
𝜏LO

ℎ 𝑓LO

)2
𝐵LO ⟨𝑃LO⟩2 RINLO,

(4.32)

where Equation (4.10) was utilized. Plugging Equation (4.31) and Equation (4.32) in

Equation (4.30) gives

𝜎2
|𝛼LO | =

𝜎2
⟨𝑛LO⟩

4|𝛼LO |2

=
1
4

(
𝜏LO

ℎ 𝑓LO

)�2
𝐵LO ⟨𝑃LO⟩�2 RINLO

���
���ℎ 𝑓LO

𝜏LO ⟨𝑃LO⟩

=
𝜏LO𝐵LO ⟨𝑃LO⟩

4ℎ 𝑓LO
RINLO.

(4.33)

Plugging Equation (4.33) in Equation (4.26) results in

𝜎2
𝑥,RINLO =

𝜏LO𝐵LO ⟨𝑃LO⟩
4ℎ 𝑓LO |𝛼LO |2

· RINLO · 𝜎2
𝑥,RINLO

, (4.34)
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which when plugging Equation (4.31) gives

𝜎2
𝑥,RINLO ≡ 𝜉RINLO =

𝐵LO

4
· RINLO · 𝜎2

𝑥,RINLO
. (4.35)

4.3 DETECTION NOISE

In a balanced homodyne detector, the difference photon number operator (Δ𝑛̂) for a

coherent state is given by Equation (4.21) as

Δ𝑛̂ = |𝛼LO | [− sin(𝜃)𝑥 + cos(𝜃)𝑝] . (4.36)

Without loss of generality (WLOG), let the phase of the LO be 𝜃 = − 𝜋
2 , giving

Δ𝑛̂ = |𝛼LO |𝑥, (4.37)

where

|𝛼LO | =
√︁
⟨𝑛LO⟩ =

√︄
𝑃LO𝜏LO

ℎ 𝑓LO
, (4.38)

giving the following expression for the variance of the difference photon number operator

𝜎2
Δ𝑛̂ =

𝑃LO𝜏LO

ℎ 𝑓LO
𝜎2
𝑥 . (4.39)

The electronic noise of the balanced homodyne detector is represented by the noise-

equivalent power (NEP), in units of W/
√
Hz, that is present at the photodiode input. To

express the voltage noise (𝑉Det) at the receiver output in terms of the NEP, Equation (3.10)

is utilized

𝑃inc =
𝐼ph

𝑅
, (4.40)

where 𝐼ph and 𝑅 are the photodiode generated current and its responsivity, respectively.

In practice, the generated photocurrent (𝐼ph) is passed through a transimpedance amplifier

(TIA), which converts the input current (𝐼ph) to a voltage (𝑉Det) with a gain factor of 𝑔TIA

𝑉Det = 𝑔TIA𝐼ph = 𝑔TIA𝑃inc𝑅 = 𝑔TIA𝑅 · NEP
√︁
𝐵el, (4.41)
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where 𝐵el is the electronic bandwidth. The effect of the electronic noise can be modelled

as an ideal receiver with an excess signal power difference (Δ𝑃inc) at its inputs, which

gives rise to an extra current difference (Δ𝐼ph) at the photodiodes output

𝛿(Δ𝑃inc) =
𝛿𝐼ph

𝑅
= NEP

√︁
𝐵el, (4.42)

with the variance being

𝜎2
Δ𝑃inc

= NEP2𝐵el. (4.43)

From Equation (4.11), the LO’s power uncertainty is related to the uncertainty in the

detected photon number by

Δ𝑛 =
Δ𝑃LO𝜏LO

ℎ 𝑓LO
, (4.44)

where ℎ is Planck’s constant, 𝑓LO is the LO frequency, and 𝜏LO is the pulse duration of

the LO. Therefore, the variance of the photon number difference is

𝜎2
Δ𝑛 =

(
𝜏LO

ℎ 𝑓LO

)2
𝜎2
Δ𝑃inc

=

(
𝜏LONEP
ℎ 𝑓LO

)2
𝐵el.

(4.45)

Equalizing Equation (4.39) and Equation (4.45) gives

𝜎2
𝑥 = 𝜎2

Δ𝑛

ℎ 𝑓LO

𝑃LO𝜏LO

=

(
𝜏LONEP
ℎ 𝑓LO

)2
𝐵el

ℎ 𝑓LO

𝑃LO𝜏LO

=
𝜏LONEP2𝐵el

ℎ 𝑓LO𝑃LO
.

(4.46)

Therefore,

𝜎2
𝑥 ≡ 𝜉det = 2

𝜏LONEP2𝐵el

ℎ 𝑓LO𝑃LO
, (4.47)

where the factor of two is due to having two detectors.
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4.4 QUANTIZATION NOISE

4.4.1 Bob

After the signal is detected using Bob’s receiver, the output is quantized using an ADC.

The limited resolution of the ADC results in a quantization error, which can be modelled

using an ideal ADC with excess voltage 𝛿𝑉Det at its input, resulting in an uncertainty

in the detected photon number given by Equation (4.44). Utilizing Equation (4.41),

Equation (4.44) can be expressed as

Δ𝑛 =
Δ𝐼ph𝜏LO

ℎ 𝑓LO𝑅

=
𝛿𝑉Det𝜏LO

ℎ 𝑓LO𝑅𝑔TIA
,

(4.48)

with the variance being

𝜎2
Δ𝑛 = 𝜎2

𝛿𝑉Det

(
𝜏LO

ℎ 𝑓LO𝑅𝑔TIA

)2
, (4.49)

which when equated to Equation (4.39) gives

𝜎2
𝑥 =

ℎ 𝑓LO

𝑃LO𝜏LO

(
𝜏LO

ℎ 𝑓LO𝑅𝑔TIA

)2
𝜎2
𝛿𝑉ADC

=
𝜏LO

𝑃LOℎ 𝑓LO𝑅2𝑔2
TIA

𝜎2
𝛿𝑉ADC

.

(4.50)

The finite resolution of an ADC results in a voltage variance of [64]

𝜎2
𝛿𝑉ADC

=
𝑄2

12

=
𝑉2
FS

12 · 22⌊𝐵th⌋
,

(4.51)

where 𝑄 is the quantization step size, 𝑉FS is the full-scale voltage range, and 𝐵th is the

maximum resolution in SNR-bits, which is given by [64]

𝐵th =
1
2

log2

(
𝑉2
FS

6𝑘𝑇𝑅eff 𝑓s

)
− 1, (4.52)

where 𝑘 is Boltzmann’s constant, 𝑇 is the absolute temperature, 𝑅eff is the effective

thermal resistance, and 𝑓s is the sampling frequency. A floor function is applied on

𝐵th to round it to the greatest integer less than it since a bit can only assume integer
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values by definition. Given that 𝐵th ∝ 𝑓 −1
s , it can be deduced that 𝜎2

𝛿𝑉ADC
∝ 𝑓s. Thus,

the quantization noise of Bob is directly proportional to the sampling rate ( 𝑓s). Finally,

plugging Equation (4.51) in Equation (4.50) and considering two ADCs gives the desired

final expression

𝜎2
𝑥 ≡ 𝜉ADC =

2𝜏LO
𝑃LOℎ 𝑓LO𝑅2𝑔2

TIA

𝑉2
FS

12 · 22⌊𝐵th⌋
. (4.53)

4.4.2 Alice

During the modulation of the initial coherent state (|𝛼𝑖⟩), the finite resolution of the used

DAC contributes to the excess noise. Assuming the desired and the excess outputs of the

DAC to be 𝑉DAC and 𝛿𝑉DAC, respectively, the output voltage is represented as

𝑉𝑎 = 𝑔(𝑉DAC + 𝛿𝑉DAC), (4.54)

where 𝑔 is the amplification factor of the amplifier following the DAC that is required to

drive the I/Q modulator. The eigenvalue of the I/Q modulator output state (|𝛼𝑚⟩) is7

𝛼𝑚 =
𝛼𝑖

2
(sin 𝜙2 + 𝑗 sin 𝜙1) , (4.55)

where 𝛼𝑖 is the eigenvalue of the input state (|𝛼𝑖⟩). Assuming that 𝛼𝑖 ∈ R, the

corresponding quadratures for the output state (|𝛼𝑚⟩) are

𝑥𝑚 =
𝛼𝑖 sin 𝜙2

2
, (4.56)

𝑝𝑚 =
𝛼𝑖 sin 𝜙1

2
. (4.57)

The obtained phase shift is related to the applied voltage (𝑉𝑎) as following

𝜙 = 𝜋
𝑉𝑎

𝑉𝜋

, (4.58)

where 𝑉𝑎 is given by Equation (4.54) and 𝑉𝜋 is the voltage required to achieve a 𝜋

phase shift. The effect of the excess voltage (𝛿𝑉DAC) is that it adds an extra term to the

7The derivation of Equation (4.55) is performed in Appendix C.
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quadrature 𝑥𝑚 as follows8

𝑥𝑚 + 𝛿𝑥𝑚 =
𝛼𝑖

2
sin

(
𝜋
𝑉𝑎

𝑉𝜋

)
=
𝛼𝑖

2
sin

(
𝜋
𝑔[𝑉DAC + 𝛿𝑉DAC]

𝑉𝜋

)
=
𝛼𝑖

2
sin

(
𝜋
𝑔𝑉DAC

𝑉𝜋

+ 𝜋
𝑔𝛿𝑉DAC

𝑉𝜋

)
=
𝛼𝑖

2

∞∑︁
𝑛=0

d𝑛 sin
(
𝜋
𝑔𝑉DAC
𝑉𝜋

)
d
(
𝜋
𝑔𝑉DAC
𝑉𝜋

)𝑛 (𝜋 𝑔𝛿𝑉DAC
𝑉𝜋

)𝑛

𝑛!

=
𝛼𝑖

2
sin

(
𝜋
𝑔𝑉DAC

𝑉𝜋

)
+ 𝛼𝑖

2

∞∑︁
𝑛=1

d𝑛 sin
(
𝜋
𝑔𝑉DAC
𝑉𝜋

)
d
(
𝜋
𝑔𝑉DAC
𝑉𝜋

)𝑛 (𝜋 𝑔𝛿𝑉DAC
𝑉𝜋

)𝑛

𝑛!
,

−→ 𝛿𝑥𝑚 =
𝛼𝑖

2

∞∑︁
𝑛=1

d𝑛 sin
(
𝜋
𝑔𝑉DAC
𝑉𝜋

)
d
(
𝜋
𝑔𝑉DAC
𝑉𝜋

)𝑛 (𝜋 𝑔𝛿𝑉DAC
𝑉𝜋

)𝑛

𝑛!

≈𝛼𝑖
2

[(
𝜋
𝑔𝛿𝑉DAC

𝑉𝜋

)
cos

(
𝜋
𝑔𝑉DAC

𝑉𝜋

)
− 1

2

(
𝜋
𝑔𝛿𝑉DAC

𝑉𝜋

)2
sin

(
𝜋
𝑔𝑉DAC

𝑉𝜋

)]
=
𝛼𝑖𝛾𝛿𝑉DAC

2

[
cos (𝛾𝑉DAC)

− 𝛾𝛿𝑉DAC

2
sin (𝛾𝑉DAC)

]
,

(4.59)

where 𝛾 ≡ 𝜋𝑔/𝑉𝜋. Therefore, the magnitude of the excess quadrature modulation (𝛿𝑥𝑚)

8The Taylor series expansion of a function 𝑓 (𝑥) in the neighborhood of a point 𝛿 is

𝑓 (𝑥 + 𝛿) =
∞∑︁
𝑛=0

d𝑛 𝑓 (𝑥)
d𝑥𝑛

𝛿𝑛

𝑛!
.
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is

|𝛿𝑥𝑚 | =
𝛾𝛼𝑖 |𝛿𝑉DAC |

2

���� cos (𝛾𝑉DAC)

− 𝛾𝛿𝑉DAC

2
sin (𝛾𝑉DAC)

����
≤ 𝛾𝛼𝑖 |𝛿𝑉DAC |

2

[
|cos (𝛾𝑉DAC) |

+
����−𝛾𝛿𝑉DAC2

sin (𝛾𝑉DAC)
����]

≤ 𝛾𝛼𝑖 |𝛿𝑉DAC |
2

[
|cos (𝛾𝑉DAC) |

+ 𝛾 |𝛿𝑉DAC |
2

|sin (𝛾𝑉DAC) |
]

≤ 𝛾𝛼𝑖 |𝛿𝑉DAC |
2

(
1 + 𝛾 |𝛿𝑉DAC |

2

)
.

(4.60)

In order to satisfy Equation (4.19), the I/Q modulator output (|𝛼𝑚⟩) is attenuated by a

factor of
√
𝑡, giving

|𝛼𝐴⟩ =
���√𝑡𝛼𝑚

〉
. (4.61)

Thus, the excess quadrature modulation transmitted by Alice (𝛿𝑥𝐴) is upper bounded by

𝛿𝑥𝐴 ≤ 𝛾
√
𝑡𝛼𝑖 |𝛿𝑉DAC |

2

(
1 + 𝛾 |𝛿𝑉DAC |

2

)
, (4.62)

−→ 𝜎2
𝑥𝐴

≤
𝛾2𝑡𝛼2

𝑖
|𝛿𝑉DAC |2

4

(
1 + 𝛾 |𝛿𝑉DAC |

2

)2
, (4.63)

Considering the magnitude-squared of Equation (4.55) gives

|𝛼𝑚 |2 =

���𝛼𝑖2
(sin 𝜙2 + 𝑗 sin 𝜙1)

���2
=
𝛼2
𝑖

4

(
sin2 𝜙2 + sin2 𝜙1

)
,

(4.64)

−→ 𝛼2
𝑖 =

4|𝛼𝑚 |2

sin2 𝜙2 + sin2 𝜙1

=
4|𝛼𝐴 |2

𝑡

(
sin2 𝜙2 + sin2 𝜙1

) , (4.65)
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which when plugged in Equation (4.63) gives

𝜎2
𝑥𝐴

≤ 𝛾2 |𝛼𝐴 |2 |𝛿𝑉DAC |2

sin2 𝜙2 + sin2 𝜙1

(
1 + 𝛾 |𝛿𝑉DAC |

2

)2

=
𝛾2𝜎2

𝐴′ |𝛿𝑉DAC |2

2
(
sin2 𝜙2 + sin2 𝜙1

) (
1 + 𝛾 |𝛿𝑉DAC |

2

)2
,

(4.66)

where the fact that |𝛼𝐴 |2 = ⟨𝑛s⟩ = 𝜎2
𝐴′/2 from Equation (4.19) was used. The variances

of the quadrature operator (𝜎2
𝐴′) and variable (𝜎2

𝐴
) are related by 𝜎2

𝐴′ = 4𝜎2
𝐴
, which gives

𝜎2
𝑥𝐴

≡ 𝜉DAC ≤
𝑇tot𝛾

22𝜎2
𝐴
|𝛿𝑉DAC |2

sin2 𝜙2 + sin2 𝜙1

(
1 + 𝛾 |𝛿𝑉DAC |

2

)2
, (4.67)

where |𝛿𝑉DAC | is given by the square root of Equation (4.51). For QPSK modulation, the

RF amplifier gain factor (𝑔) is given by

𝑔 =
𝑉𝜋

𝑉DAC
, (4.68)

giving 𝛾 = 𝜋
𝑉DAC
. Also, since 𝜙1, 𝜙2 ∈

{
± 𝜋

2
}
for QPSK modulation, sin2 𝜙2 + sin2 𝜙1 = 2,

resulting in

𝜉
QPSK
DAC ≤

𝑇tot𝜋
2𝜎2

𝐴
|𝛿𝑉DAC |2

𝑉2
DAC

(
1 + 𝜋 |𝛿𝑉DAC |

2𝑉DAC

)2
. (4.69)

4.5 NOISE ANALYSIS

In order to approximate the effect of noise sources in a practical experiment, noise models

are utilized using hardware-specific parameters that match the experiment described in

Chapter 5. This helps optimize system performance and identify potential sources of

error, improving experimental accuracy and reliability.

• Laser:

- Wavelength (𝜆s, LO) = 1550 nm

- Linewidth (𝐵s, LO) = 100 kHz

- RINs, LO = 3.16 × 10−14 Hz−1

- LO Power (𝑃LO) = 5 mW

- Modulation Variance (𝜎2
𝐴
) = 40.5 SNU

• DAC:
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- Full-Scale Voltage (𝑉DACFS ) = 2 V

- Resolution (𝑛DACbits ) = 16 Bits

- Maximum Voltage (𝑉DAC) = 12 mV

• ADC:

- Full-Scale Voltage (𝑉ADCFS ) = 2.5 V

- Resolution (𝑛ADCbits ) = 12 Bits

- Sampling Frequency ( 𝑓 ADCs ) = 2.5 GSa/s

• Detector:

- NEP = 5 pW/
√
Hz

- Bandwidth (𝐵el) = 400 MHz

- Responsivity (𝑅) = 1.05 A/W

- TIA Gain (𝑔TIA) = 4.76 kV/A

• Channel:

- Length (𝐿ch) = 50 km - Attenuation Rate (𝛼ch) = 0.2 dB/km

The simulated noises along with their parameters dependence and anticipated values are

outlined below:

• 𝜉RINs
(
𝜎2
𝐴
, 𝐵s,RINs

)
= 0.009 SNU,

• 𝜉det (𝜏LO,NEP, 𝐵el, 𝑓LO, 𝑃LO) = 0.078 SNU,

• 𝜉ADC

(
𝜏LO, 𝑓LO, 𝑃LO, 𝑅, 𝑔TIA, 𝑉

ADC
FS , 𝑛ADCbits

)
= 0.01 SNU,

• 𝜉
QPSK
DAC

(
𝐿ch, 𝜎

2
𝐴
, 𝑉DACFS , 𝑛DACbits , 𝑉

max
DAC

)
= 0 SNU,

where 𝜏LO = 1/𝐵el for a CW laser. Figure 4.2 shows the dependence of 𝜉RINs on the

modulation variance (𝜎2
𝐴
), exhibiting a linear relationship as the signal power increases.

In Figure 4.3, the anticipated values of 𝜉det and 𝜉ADC as a function of the LO power (𝑃LO)

are presented, following an exponential decay behavior. For 𝜉ADC, its contribution can

be safely ignored.

Among all the noise sources, the detector noise (𝜉det) has the most adverse effect on the

system performance, as evident from Figure 4.3. Although increasing the LO power will

diminish it, other noise sources, like 𝜉RINs from Figure 4.2 and the thermal noise, start

becoming significant.
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Figure 4.2: Dependence of excess noise due to the relative intensity noise (RIN) on
signal power, quantified by modulation variance (𝜎2

𝐴
). A linear relationship

is observed with relatively small noise levels (< 0.01 SNU) for practical
values of 𝜎2

𝐴
.

Figure 4.3: The effect of varying the local oscillator (LO) power on the detection noise
(𝜉det) and analog-to-digital converter (ADC) quantization noise (𝜉ADC). An
exponential decay dependence is observed, where 𝜉det is consistently an order
of magnitude higher than 𝜉ADC.
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CHAPTER 5

HARDWARE IMPLEMENTATION

5.1 SYSTEM DESIGN

Themajor advantage of CV-QKD comes from the ability to detect the transmitted quantum

signal using coherent receivers, originally developed for coherent telecommunication

systems. In the coherent receiver, the quantum signal is mixed with an LO characterized

by a high power. In order to correctly interpret the coherent receiver output, the

relative phase shift between the incoming quantum signal and the LO should be known.

Some implementations of CV-QKD relied on sending the original LO used for the

quantum signal [65], known as the transmitted local oscillator (TLO) scheme. However,

transmitting the LO poses a security threat as it enables side-channel attacks [66]–[70].

Moreover, in TLO, the channel loss limits the available power of the LO at the receiver side,

which degrades the performance of the coherent receiver. As discussed in Appendix B,

in shot-noise limited coherent detection, the LO power is assumed to be high such

that it is treated classically. Experimentally, it was shown that the typical photons per

pulse difference between the LO and the quantum signal is around 𝑛𝛾 = 108 [65]. At a

wavelength of 1550 nm, pulse repetition rate of 𝑓sym = 100 MBd, and 25 dB channel

loss1, this corresponds to a power difference of

Δ𝑃 =
ℎ𝑐

𝜆
· 𝑛𝛾 · 𝑓sym · 10

LossdB
10

=

(
6.626 × 10−34) (

2.998 × 108)
1550 × 10−9 · 108 · 108 · 102.5

≈ 400 mW.

Moreover, transmitting the LO with high power, besides being energy inefficient, will

disturb the transmitted quantum signals. Therefore, the LLO is the chosen scheme in the

1This is the typical loss for a 100 km single-mode fiber at 1550 nm.



design.

In LLO, the carrier signal and the LO are independently generated and carrier recovery

is needed to estimate and compensate for the frequency and phase mismatch. Since

the quantum signal is extremely weak, resulting in a low transmission rate, it is not

reliable to establish a phase reference. Therefore, a strong pilot tone is utilized as a

reference signal. The pilot tone is also used for clock synchronization between Alice and

Bob. Different multiplexing schemes of the quantum signal and pilot tone have been

investigated in the literature. In [71], the time and polarization degrees of freedom are

simultaneously utilized for multiplexing. For [31], frequency multiplexing is performed,

while a combination of frequency and polarization multiplexing are used in [33], [35].

The opted multiplexing scheme is in the polarization degree of freedom, known as

polarization-division multiplexing (PDM). PDM offers several advantages over other

multiplexing schemes. First, the power of the pilot tone and quantum signal can be more

conveniently adjusted. Moreover, PDM of the pilot tone and quantum signal offers better

performance due to the reduction of crosstalk, as shown by [72].

5.2 EXPERIMENTAL SETUP

For system verification, the initial implementation will utilize the TLO scheme along with

time-division multiplexing (TDM). The devised experimental setup and DSP algorithms

are shown in Figure 5.1. Initially, a 90:10 optical coupler is utilized to split the light

from a 1550 nm laser with 100 kHz linewidth. The optical isolator serves to prevent

decoherence and damage to the laser. The higher power output is transmitted directly to

the receiver to be used as an LO. In reality, the LO could be generated at Bob’s side, with

appropriate signal processing to correct the frequency offset between the transmitted laser

and LO [30]. Nevertheless, the configuration discussed here suffices for the current scope

of work. The signal is transmitted through a one km standard single-mode fiber with 0.2

dB/km attenuation rate. At the receiver, a 90◦ optical hybrid is used, followed by two 400
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Figure 5.1: System architecture showcasing the utilized signal processing algorithms
and hardware setup. The pulse-shaped and frequency-up-converted data
are modulated into the optical signal via an RF waveform. The signal and
local oscillator (LO) polarizations are matched at the receiver before being
mixed in the 90◦ hybrid. The 90◦ hybrid generates a pair of signals for each
quadrature, which is detected using a balanced receiver. An oscilloscope
subsequently samples the output of the balanced receiver.

MHz bandwidth and DC-coupled balanced photoreceivers with a 25 dB common-mode

rejection ratio (CMRR)2. The low 5 pW/
√
Hz NEP makes this receiver applicable for

operation in the shot-noise-dominated regime, which is required in CV-QKD. Finally,

the analog output is sampled at 2.5 GSa/s with a 390 𝜇V resolution enabled by the

high-resolution 12-bit oscilloscope. In order to eliminate the need for DC offsetting,

which degrades the oscilloscope resolution, DC blocks are placed after the balanced

receivers. Even though the photoreceiver DC component is blocked, there is a significant

low-frequency pink noise due to the electronics, which needs to be eliminated to obtain

positive key rates. This is achieved by matched filtering, an LPF that captures the signal

band after shifting the low-frequency electronic noise away from the baseband through

frequency downconversion.

2The CMRR is a metric that quantifies an electronic circuit’s ability to reject undesired common-mode
signals in both the input signal and the ground reference. A higher value indicates that the circuit can more
effectively reject common-mode signals, thus preserving the integrity of the differential signal.
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5.3 RESULTS

5.3.1 Shot-Noise Calibration3

For the following result, a different balanced receiver than the one used in Section 5.3.2

and discussed previously is utilized. The experimental stages are outlined in Table 5.1.

At first, the detector noise (𝜉det) is measured by blocking both switches. Then, the LO

switch is turned ON to estimate the shot noise variance (𝑁0). High clearance between

the shot and detector noises is desired, quantified by the logarithmic difference of their

powers as following

Clearance ≡ 10 · log10

(
𝜉sn

𝜉det

)
[dB]. (5.1)

Table 5.1: The followed steps needed to evaluate the detector (electronic noise 𝜉det),
shot-noise (𝑁0), and excess noise (𝜉A) different sources of variance.

LO Switch Signal Switch Measured Variance [V2]

Stage I OFF OFF 𝜉det
Stage II ON OFF 𝑁0 + 𝜉det
Stage III ON ON 𝑁0 + 𝜉det + 𝑇tot · 𝜎̄2

A + 𝜉tot

An optical attenuator was used to vary the LO power to maximize the clearance while

ensuring the linear power dependence, corresponding to the quantum regime where

the shot noise is dominant over other classical noises (e.g., thermal and laser intensity

fluctuation). As Figure 5.2 shows, the low-frequency noise has a detrimental effect

on calibrating the receiver in the shot-noise limit. When this noise is blocked using a

LPF, the expected linear-dependence is obtained as shown in Figure 5.3. The frequency

response plots shown in 5.2 and 5.3 reveal that the high-frequency components have

significantly higher electronic noise levels, resulting in a smaller Clearance, as illustrated

in 5.4. Limiting the high-frequency components can increase the Clearance, but this also

reduces the maximum possible symbol rate, highlighting the need to optimize between

these two factors.
3A. Alsaui, Y. Alwehaibi, A. Prabhakar, and D. Venkitesh, “Digital filter design for experimental

continuous-variable quantum key distribution”, in 2023 Optical Fiber Communications Conference and
Exhibition (OFC), IEEE, 2023, pp. 1–3.
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(a)

(b)

Figure 5.2: (a) Magnitude of frequency components and (b) corresponding voltage
variance behavior for the different local oscillator (LO) powers. Although a
linear relationship with LO power is expected in (b), it is not observed due to
the influence of low-frequency noise depicted in (a).

For the optimized LO power, we capture the variance at the output (𝜎2
B) for different

values of input signal power levels. We also vary the first stage band-pass filter (BPF)’s

lower and upper cutoff frequencies. The secret key rate (SKR) for each case is shown

in the heat map in Figure 5.5. In case of low signal powers, irrespective of the filter

used, SKR is close to zero because the electronic noise dominates. At very high signal

power levels, the system moves to classical operation. In the optimal range of optical

powers, the filters’ cutoff frequencies are found to significantly influence the maximal

achievable key rates, shown in Figure 5.5. Note that the filter bandwidths change with a

change in the shot noise (optical power). Figure 5.6 shows the achievable transmission

lengths and the corresponding SKR for the possible combination of the lower and upper
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(a)

(b)

Figure 5.3: Low-pass filtered version of Figure 5.2, where (a) shows the magnitude of
frequency components and (b) the corresponding voltage variance behavior
for the different local oscillator (LO) powers. The low-pass filter removes the
effect of high-frequency noise, revealing a clear linear dependence on LO
power in (b).

cutoff frequencies indicated in the legend. At 20 km, around 20 MBd is possible for

𝜎2
A = 12.5 𝜇W. Note that the possible symbol rate for modulation gets limited as the

bandwidth decreases. These plots highlight the importance of the correct choice of filter

cutoff frequencies in the BPF used as a first post-processing step to achieve a positive

SKR in a practical experiment.

5.3.2 Symbols Exchange

The shot-noise calibration procedure is redone for the initially described balanced

receiver.Figure 5.7 shows the measured noise variance as a function of LO power after
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Figure 5.4: The effect of band-pass filtering on the achieved Clearance, with the lower
cutoff frequency set to 100 MHz. The achieved Clearance exhibits an inverse
relationship with the upper cutoff frequency, as the filter blocks the higher-
power components of the electronic noise.

Figure 5.5: Heat map of secret key rate (SKR) for different input signal power levels with
optimized local oscillator (LO) power and various band-pass filter (BPF)
cutoff frequencies. The filters’ cutoff frequencies significantly influence the
maximal achievable key rates in the optimal range of optical powers.

applying a BPF with cutoff frequencies [32.5, 92.5] MHz, corresponding to a 50 Mbd

signal with a 0.2 ROF and up-converted to 62.5 MHz. The achieved clearance is 19.4
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Figure 5.6: Extrapolated secret key rate (SKR) for the optimum cutoff frequencies at
each modulation power from Figure 5.5.

dB at around 5 mW LO power. We use this optimized LO power for further experiments.

Figure 5.7: Shot-noise calibration procedure: voltage variance is measured as a function
of the LO power. The dashed orange line indicates the detector noise, and
the purple line shows the optimal operating point.

6,558 QPSK symbols are exchanged at a 50 MBd rate, where the first half is dedicated to

pilot symbols for phase correction. The symbols obtained after the Rx DSP are shown in

Figure 5.9, where the pilot symbols’ high power compared to the quantum symbols is

apparent. Moreover, the obtained phase is smudged all over the phasor plane, caused

by the linear phase shift depicted in Figure 5.10. The retrieved quantum symbols after

phase correction are shown in Figure 5.11 with 4% BER, where the amplitude has been
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Figure 5.8: Power spectral density contributions of the detector and Shot noises at the
chosen 5 mW LO operation point. The bandwidth considered affects the
clearance between the shot and electronic noise, where the higher frequency
band reduces clearance.

normalized to SNU after dividing the voltage by the square root of the shot noise (𝑁0).

The modulation variance (𝜎2
A) is estimated as following

𝜎2
A = 2⟨𝑛⟩

= 2
𝐸sym

𝐸𝛾

= 2
𝑃sym · 𝑇sym

ℎ𝑐

𝜆

.

(5.2)

Since the symbol power (𝑃sym) is too weak to be measured by the optical power meter

(OPM), the pilot signal power (𝑃pilot) and the quantum to pilot signals amplitude ratio

(𝑅sym) are utilized to compute it as follows

𝑃sym = 𝑃pilot · 𝑅2
sym

= (900 nW) · (0.012)2

= 130 pW,

(5.3)
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Figure 5.9: Phasor representation of the pilot and quantum symbols before phase
correction, showing the spread of constellation points around the phase
space due to linear phase noise.

Figure 5.10: The extrapolated quantum symbols correction phase from the linearly fitted
pilot tone phase offset.
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Figure 5.11: The phasor representation of the retrieved quantum symbols shows each
symbol represented as a vector in the complex plane. The length of the
vector indicates the symbol’s amplitude, while the angle represents the
phase. As intended, the symbols are clustered around the origin, indicating
a high degree of uncertainty in distinguishing them, resulting in a high bit
error rate (BER) of 4%.

which gives

𝜎2
A = 2

(
152 × 10−12) · (20 × 10−9)(
6.63 × 10−34) (

3.00 × 108) · (1550 × 10−9
)

= 40.5 SNU,

(5.4)

corresponding to around 20 photons per symbol. For a back-to-back configuration with

a channel length of a couple of meters, the obtained excess noise (𝜉exc) was 0.0002

SNU, which permits system operation with positive SKR for high distances as shown in

Figure 5.12.

The system performance for different signal powers is investigated. Figure 5.13 shows

the effect of the signal power on the achieved BER. The investigated trials had a photon
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Figure 5.12: The extrapolated SKR for 𝜉exc = 0.0002 SNU and 𝜎2
A = 40.5 SNU.

per symbol of 0.3, 1.1, 4.4, and 17.8, corresponding to the powers 1.8, 7.1, 28.5, and 114

pW, respectively. As expected, higher modulation variances decrease the BER. On the

other hand, as highlighted in Figure 2.8, the SKR diminishes for a higher signal power.

Therefore, the optimal power range should be carefully chosen to maximize the SKR

without increasing the BER beyond what the ECC algorithm can correct.

Figure 5.13: Effect of varying the signal power, represented by photons per symbol, on
the achieved bit error rate (BER). As expected, a low modulation variance
gives rise to a higher error.
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CHAPTER 6

CONCLUSION

6.1 MAIN CONTRIBUTION

The work extensively covered all the practical CV-QKD implementation elements.

Initially, the theoretical background of CV-QKD was discussed and analyzed, including

mathematical formalism, system representation, and state evolution. Moreover, the

post-processing stages for the protocol were detailed. The security proofs of CV-QKD

systems were rigorously derived and examined.

Techniques from coherent optical communication were utilized as the enabling platform

for implementing CV-QKD systems. The operation principle of the coherent receiver was

reviewed, and the appropriate operation regime was determined. DSP algorithms relevant

to the desired system functionality were first theoretically defined. Then, Python-based

implementation of the DSP techniques was built from scratch, including resampling,

modulation, filtering, and phase correction algorithms. The practical aspects of deploying

the devised DSP algorithms were also considered.

The physical effect fromwhich the system security is derived, the quantum shot noise, was

examined, and its mathematical description was meticulously derived. Concerning the

anticipated system nonidealities, prominent sources of classical noise were investigated,

and their expected effect on the system performance was simulated. Although the final

expressions are identical to [50], the derivations performed in this work are more detailed

and elaborate.

The experimental system architecture is presented with a rationale for the software and

hardware design choices. Optimization of the digital filtering procedure demonstrated

the capability of enhancing the system performance, which was published at the Optical



Fiber Communication (OFC) conference [73]. Finally, quantum symbols were exchanged

with low excess noise, demonstrating the system’s capability of transferring secure keys

over large distances.

All the utilized hardware components (e.g., IQ modulator, hybrid, and balanced receiver)

are typically used in coherent optical communications. The novel aspect is picking the

correct components with the needed characteristics to enable quantum communication

applications. Below are some of the significant hardware characteristics that has been

considered:

• High voltage resolution, sample rate, and bandwidth arbitrary waveform generator
(i.e., DAC) and oscilloscope (i.e., ADC).

• Small linewidth laser.

• Low dark noise and high bandwidth balanced photoreceiver.

One novel aspect is the implemented time-multiplexing scheme of the pilot tone (to track

the laser phase) and quantum symbols. Other works have utilized time-multiplexing but

in a different way than what was done in this work [74], although both approaches result

in an equivalent outcome.

Overall, this work contributes to the field of QKD by demonstrating the capability of

a discrete-modulated CV-QKD system using state-of-the-art components. Developing

robust DSP algorithms further enhance the achievable SKR, and investigating various

noise sources and their effects on system performance led to the development of methods

to mitigate these effects. The main contributions of this Master’s thesis are listed below.

• Operation of an optical QPSK-modulated CV-QKD system through:

1. Robust DSP algorithms.

2. Thorough security analysis.

3. Appropriate system design.

4. Careful experimental implementation.

• System performance enhancing through:
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1. Digital filter optimization [73]. 2. Utilization of machine learning.1

6.2 FUTURE WORK

The proof-of-principle CV-QKD system has successfully demonstrated its capability to

achieve high key rates over long distances. However, future work should incorporate

finite-size analysis to ensure its practical applicability, considering the effect of finite

data samples on the system’s security. This will result in a more realistic assessment

of the achievable key rates, which will be lower than the asymptotic limit presented in

Figure 5.12. Additionally, the system’s quantum symbol power can be optimized for each

channel length to further increase the achievable key rates. Moreover, Gaussian security

proofs are known to overestimate the SKR of QPSKmodulation in the high-power regime

of greater than five photons per symbol [51]. In order to address this limitation, two

approaches could be considered: reducing the power of the quantum symbols or utilizing

the ready-made Matlab model for QPSK modulation by [44]. On the experimental

front, potential areas for improvement in CV-QKD systems include multiplexing the pilot

tone in both the frequency and polarization degrees of freedom, which has been shown

to reduce crosstalk between the classical and quantum channels and increase the SKR

[72]. This would require a dual-polarization I/Q modulator and a polarization-diverse

coherent receiver. Also, utilizing a local LO at Bob’s side can enhance security against

side-channel attacks [66]. By exploring these potential improvements, CV-QKD systems

could achieve higher SKRs and enhanced security.

1A. Alsaui, Y. Alghofaili, and D. Venkitesh, “Machine Learning Modeling and Time-Series
Decomposition Analysis for Continuous-Variable Quantum Key Distribution”, European Conference on
Optical Communication (ECOC), 2023 [Submitted Paper]
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APPENDIX A

SHOT NOISE CURRENT

In order to derive an expression for the variance of the shot noise current fluctuation,[
Δ𝐼ph (𝑡)

]2, consider the configuration illustrated in Figure A.1a, where a potential

difference is applied across two electrodes separated by a distance 𝑑. Since the potential

difference is kept small, electrons are emitted from electrode 𝐴 to electrode 𝐵 in a random

manner, generating a current (𝑖(𝑡)) for each impinging electron. An exchanged electron

can be modelled as a large and thin sheet of charge −𝑒 which moves towards electrode 𝐵

with speed 𝑣. Utilizing Figure A.1b, the induced charge on electrodes 𝐴 and 𝐵 are [75]

𝑄𝐴 =
𝑒(𝑑 − 𝑥)

𝑑
, (A.1)

𝑄𝐵 =
𝑒𝑥

𝑑
, (A.2)

where the varying charge (𝑄𝐵) gives rise to the current generated in electrode 𝐵 as

follows

𝑖(𝑡) = d𝑄𝐵

d𝑡
=

𝑒

𝑑

d𝑥
d𝑡

=
𝑒

𝑑
𝑣(𝑡), (A.3)

for a velocity 𝑣(𝑡) of the moving sheet. For an aperiodic signal 𝑥(𝑡), its Fourier transform

can be expressed as

𝑋 (𝜔) = F [𝑥(𝑡)] =
∫ ∞

−∞
𝑥(𝑡)𝑒− 𝑗𝜔𝑡d𝑡. (A.4)

Now, letting the time of emission and absorption of the electron be 0 and 𝑡𝑎, respectively,

the Fourier transform of 𝑖(𝑡) is

𝐼 (𝜔) = 𝑒

𝑑

∫ 𝑡𝑎

0

d𝑥
d𝑡

𝑒− 𝑗𝜔𝑡d𝑡 =
𝑒

𝑑

∫ 𝑡𝑎

0
𝑒− 𝑗𝜔𝑡d𝑥. (A.5)



Since the transition time of the electron, 𝑡𝑎, is extremely small, 𝜔𝑡𝑎 ≪ 1 and thus

𝐼 (𝜔) ≈ 𝑒

𝑑

∫ 𝑡𝑎

0
d𝑥 = 𝑒. (A.6)

The PSD of a signal 𝑥(𝑡) with a Fourier transform 𝑋 (𝜔) is defined as

𝑆𝑥 (𝜔) = lim
𝑇→∞

|𝑋𝑇 (𝜔) |2

𝑇
, (A.7)

where 𝑆𝑥 (𝜔)d𝜔 is the average power from the frequency components 𝜔 to 𝜔 + d𝜔 of the

signal 𝑥(𝑡). For a Poissonian distribution, the PSD can be approximated as [75]

𝑆𝑥 (𝜔) ≈ 2⟨𝑁⟩|𝑋 (𝜔) |2, (A.8)

where ⟨𝑁⟩ is the average rate of impinging electrons. For 𝑖(𝑡), the PSD is

𝑆𝑖 (𝜔) = 2⟨𝑁⟩|𝐼 (𝜔) |2 = 2⟨𝑁⟩𝑒2 = 2⟨𝐼⟩𝑒. (A.9)

Given a bandwidth Δ𝜔, the sought-after form of the shot noise current variance is

⟨𝑖2SN⟩ = 2⟨𝐼⟩𝑒Δ𝜔 . (A.10)
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(a)

(b)

Figure A.1: The considered configuration utilized for the derivation of an expression for[
Δ𝐼ph (𝑡)

]2.
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APPENDIX B

BALANCED HOMODYNE DETECTION

The balanced homodyne detector (BHD) is the quantum analogue of the 180◦ hybrid. In

principle, the signal of interest is mixed with a LO using a 50:50 beam splitter (BS) as

shown in Figure B.1. For an ideal phase-free (balanced) 50:50 BS, the scattering matrix

is given by [52]

𝑇𝐵𝑆 =
1
√

2


1 𝑗

𝑗 1

 . (B.1)

For the input coherent state (|𝛼⟩), the corresponding annihilation operator (𝑎̂) in SNU is

given by Equation (2.35). The LO field is treated classically since it has a high power

with respect to the signal, which is given by

𝛼LO = |𝛼LO |𝑒 𝑗𝜃 = 𝑥LO + 𝑗 𝑝LO. (B.2)

Applying the BS to the two input signals give rise to the outputs represented by the

operators 𝑂̂1 and 𝑂̂2 as following
𝑂̂1

𝑂̂2

 = 𝑇𝐵𝑆


𝑎̂

𝛼LO


=

1
√

2


1 𝑗

𝑗 1



𝑎̂

𝛼LO


=

1
√

2


𝑎̂ + 𝑗𝛼LO

𝑗 𝑎̂ + 𝛼LO

 .
(B.3)

The photocurrents generated from the BS outputs are proportional to the number of

photons, which is represented by the photon number operators 𝑛̂1 and 𝑛̂2 for the outputs



𝑂̂1 and 𝑂̂2, respectively, where they are given by

𝑛̂1 = 𝑂̂
†
1𝑂̂1 =

1
2

(
𝑎̂† − 𝑗𝛼∗

LO

)
(𝑎̂ + 𝑗𝛼LO)

=
1
2

(
𝑎̂†𝑎̂ + 𝑗 𝑎̂†𝛼LO − 𝑗𝛼∗

LO𝑎̂ + |𝛼LO |2
)
,

(B.4)

𝑛̂2 = 𝑂̂
†
2𝑂̂2 =

1
2

(
− 𝑗 𝑎̂† + 𝛼∗

LO

)
( 𝑗 𝑎̂ + 𝛼LO)

=
1
2

(
𝑎̂†𝑎̂ − 𝑗 𝑎̂†𝛼LO + 𝑗𝛼∗

LO𝑎̂ + |𝛼LO |2
)
.

(B.5)

Thus, the difference between the generated photocurrent should be proportional to the

difference photon number operator (Δ𝑛̂) given by

Δ𝑛̂ ≡ 𝑛̂1 − 𝑛̂2 = 𝑗

(
𝛼LO𝑎̂

† − 𝛼∗
LO𝑎̂

)
. (B.6)

Utilizing Equation (2.34) and Equation (2.35) along with Equation (B.2) in Equation (B.6)

gives

Δ𝑛̂ = 𝑗

(
𝛼LO𝑎̂

† − 𝛼∗
LO𝑎̂

)
= |𝛼LO |𝑒 𝑗𝜃

𝑗

2
(𝑥 − 𝑗 𝑝) − |𝛼LO |𝑒− 𝑗𝜃 𝑗

2
(𝑥 + 𝑗 𝑝)

=
|𝛼LO |

2

[
𝑗

(
𝑒 𝑗𝜃 − 𝑒− 𝑗𝜃

)
𝑥 +

(
𝑒 𝑗𝜃 + 𝑒− 𝑗𝜃

)
𝑝

]
−→ Δ𝑛̂ = |𝛼LO | [− sin(𝜃)𝑥 + cos(𝜃)𝑝] . (B.7)

Figure B.1: A diagram representing a balanced homodyne detector (BHD), where |𝛼⟩
and LO represents the incoming coherent state and the local oscillator signals,
respectively.
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APPENDIX C

MODULATOR

Figure C.1: Configuration for the I/Q modulator made up of two directional couplers,
two MZIs, and a phase shifter.

The considered I/Q modulator is depicted in Figure C.1 which starts with a directional

coupler, followed by two MZIs along with a phase shifter for one of them, then a

directional coupler in the final stage. The output of the first stage is
𝑆1

1

𝑆2
1

 = 𝑇BS


0

𝛼𝑖


=

1
√

2


1 𝑗

𝑗 1




0

𝛼𝑖


=

𝛼𝑖√
2


𝑗

1

 .
(C.1)



In the second stage, the corresponding outputs are
𝑆1

2

𝑆2
2

 = 𝑇BS


0

𝑆1
1


=

𝑆1
1√
2


𝑗

1


=
𝛼𝑖

2


−1

𝑗

 ,
(C.2)

and 
𝑆3

2

𝑆4
2

 = 𝑇BS


0

𝑆2
1


=

𝑆2
1√
2


𝑗

1


=
𝛼𝑖

2


𝑗

1

 .
(C.3)

After applying the phase shifts in the third stage, the states are transformed to

𝑆1
3

𝑆2
3

𝑆3
3

𝑆4
3


=



𝑒 𝑗𝜙1𝑆1
2

𝑒− 𝑗𝜙1𝑆2
2

𝑒 𝑗𝜙2𝑆3
2

𝑒− 𝑗𝜙2𝑆4
2


=
𝛼𝑖

2



−𝑒 𝑗𝜙1

𝑗 𝑒− 𝑗𝜙1

𝑗 𝑒 𝑗𝜙2

𝑒− 𝑗𝜙2


.

(C.4)
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In the fourth stage, directional couplers are applied, giving
𝑆1

4

𝑆2
4

 = 𝑇BS


𝑆1

3

𝑆2
3


=

1
√

2


𝑆1

3 + 𝑗𝑆2
3

𝑗𝑆1
3 + 𝑆2

3


=

𝛼𝑖

2
√

2


−𝑒 𝑗𝜙1 − 𝑒− 𝑗𝜙1

− 𝑗 𝑒 𝑗𝜙1 + 𝑗 𝑒− 𝑗𝜙1


=
−𝛼𝑖√

2


cos 𝜙1

− sin 𝜙1

 ,

(C.5)

and 
𝑆3

4

𝑆4
4

 = 𝑇BS


𝑆3

3

𝑆4
3


=

1
√

2


𝑆3

3 + 𝑗𝑆4
3

𝑗𝑆3
3 + 𝑆4

3


=

𝛼𝑖

2
√

2


𝑗 𝑒 𝑗𝜙2 + 𝑗 𝑒− 𝑗𝜙2

−𝑒 𝑗𝜙2 + 𝑒− 𝑗𝜙2


=

𝑗𝛼𝑖√
2


cos 𝜙2

− sin 𝜙2

 .

(C.6)

Considering only two outputs where one is phase shifted gives
𝑆1

5

𝑆2
5

 =


𝑆2

4

���*
𝑗

𝑒 𝑗
𝜋
2 · 𝑆4

4


=

𝛼𝑖√
2


sin 𝜙1

sin 𝜙2

 .
(C.7)
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Finally, after passing through the last optical element,

𝛼𝑚 =
1
√

2

(
𝑗𝑆1

5 + 𝑆2
5

)
,

−→ 𝛼𝑚 =
𝛼𝑖

2
( 𝑗 sin 𝜙1 + sin 𝜙2) . (C.8)
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APPENDIX D

NORMAL DISTRIBUTION SAMPLING

In order to obtain a truthful representation for the normal distribution, a certain number

of samples is needed. The fidelity of the sampled distribution is measured through the

width of the confidence interval (CI) containing the actual value of a parameter from

the actual population with certain desired confidence (1 − 𝛼). For example, 𝛼 = 0.05

defines the 95% CI, where the parameter’s actual value falls within the CI with a 0.95

probability. For 𝑁 samples, the degrees of freedom (DoF) is

DoF = 𝑁 − 1, (D.1)

which is used to compute the CI in the standard deviation 𝜎 as following [76]

𝜎𝑠

√
DoF

𝜒1−𝛼/2
≤ 𝜎 ≤ 𝜎𝑠

√
DoF

𝜒𝛼/2
, (D.2)

where 𝜎𝑠 is the standard deviation of the sampled distribution and 𝜒2
𝑥 is the position in

the chi-squared distribution where a fraction 𝑥 of the area falls to the left of it. That

is, 𝜒2
𝑥 is the point marking the beginning of the chi-squared distribution left-tail to be

excluded. Some of the critical values for the chi-squared distribution are tabulated in

Table D.1 [76]. As an example, let DoF = 50 and 𝛼 = 0.1, which gives

𝜎𝑠

√
50

𝜒0.95
≤ 𝜎 ≤ 𝜎𝑠

√
50

𝜒0.05
,

−→ 𝜎𝑠

√
50

√
67.505

≤ 𝜎 ≤ 𝜎𝑠

√
50

√
34.764

,

−→ 0.861𝜎𝑠 ≤ 𝜎 ≤ 1.199𝜎𝑠 .

(D.3)

For 𝜎 = 10, 50 trials are performed where the sampled standard deviation (𝜎𝑠) is

computed from 51 data points that are sampled from a normal distribution. The result of

the experiment is tabulated in Table D.2, where it is expected that about 45 trials (90%)



will satisfy Equation (D.3). 44 trials (88%) give a standard deviation within the CI.

A different and crude approach to approximate the needed number of samples is illustrated

in Figure D.1. The number of samples is swept for different values for the standard

deviation. As evident by Equation (D.2), for higher standard deviation (𝜎) values, the

uncertainty of the sampled standard deviation (𝜎𝑠) grows wider.

Figure D.1: The sampled standard distribution as a function of the number of samples
for different standard distributions. A moving average that is eight samples
wide is used to smoothen the plot.
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Table D.1: Tabulated values for the one-tailed chi-squared distribution values.

x 0.01 0.05 0.2 0.5 0.9 0.95 0.99

DoF
1 0.000157 0.00393 0.0158 0.455 2.706 3.841 6.635
2 0.020 0.103 0.211 1.386 4.605 5.991 9.210
3 0.115 0.352 0.584 2.366 6.251 7.815 11.345
4 0.297 0.711 1.064 3.357 7.779 9.488 13.277
5 0.554 1.145 1.610 4.351 9.236 11.070 15.086
6 0.872 1.635 2.204 5.348 10.645 12.592 16.812
7 1.239 2.167 2.833 6.346 12.017 14.067 18.475
8 1.646 2.733 3.490 7.344 13.362 15.507 20.090
9 2.088 3.325 4.168 8.343 14.684 16.919 21.666
10 2.558 3.940 4.865 9.342 15.987 18.307 23.209
11 3.053 4.575 5.578 10.341 17.275 19.675 24.725
12 3.571 5.226 6.304 11.340 18.549 21.026 26.217
13 4.107 5.892 7.042 12.340 19.812 22.362 27.688
14 4.660 6.571 7.790 13.339 21.064 23.685 29.141
15 5.229 7.261 8.547 14.339 22.307 24.996 30.578
16 5.812 7.962 9.312 15.338 23.542 26.296 32.000
17 6.408 8.672 10.085 16.338 24.769 27.587 33.409
18 7.015 9.390 10.865 17.338 25.989 28.869 34.805
19 7.633 10.117 11.651 18.338 27.204 30.144 36.191
20 8.260 10.851 12.443 19.337 28.412 31.410 37.566
21 8.897 11.591 13.240 20.337 29.615 32.671 38.932
22 9.542 12.338 14.041 21.337 30.813 33.924 40.289
23 10.196 13.091 14.848 22.337 32.007 35.172 41.638
24 10.856 13.848 15.659 23.337 33.196 36.415 42.980
25 11.524 14.611 16.473 24.337 34.382 37.652 44.314
26 12.198 15.379 17.292 25.336 35.563 38.885 45.642
27 12.879 16.151 18.114 26.336 36.741 40.113 46.963
28 13.565 16.928 18.939 27.336 37.916 41.337 48.278
29 14.256 17.708 19.768 28.336 39.087 42.557 49.588
30 14.953 18.493 20.599 29.336 40.256 43.773 50.892
31 15.655 19.281 21.434 30.336 41.422 44.985 52.191
32 16.362 20.072 22.271 31.336 42.585 46.194 53.486
33 17.074 20.867 23.110 32.336 43.745 47.400 54.776
34 17.789 21.664 23.952 33.336 44.903 48.602 56.061
35 18.509 22.465 24.797 34.336 46.059 49.802 57.342
36 19.233 23.269 25.643 35.336 47.212 50.998 58.619
37 19.960 24.075 26.492 36.336 48.363 52.192 59.892
38 20.691 24.884 27.343 37.335 49.513 53.384 61.162
39 21.426 25.695 28.196 38.335 50.660 54.572 62.428
40 22.164 26.509 29.051 39.335 51.805 55.758 63.691
41 22.906 27.326 29.907 40.335 52.949 56.942 64.950
42 23.650 28.144 30.765 41.335 54.090 58.124 66.206
43 24.398 28.965 31.625 42.335 55.230 59.304 67.459
44 25.148 29.787 32.487 43.335 56.369 60.481 68.710
45 25.901 30.612 33.350 44.335 57.505 61.656 69.957
46 26.657 31.439 34.215 45.335 58.641 62.830 71.201
47 27.416 32.268 35.081 46.335 59.774 64.001 72.443
48 28.177 33.098 35.949 47.335 60.907 65.171 73.683
49 28.941 33.930 36.818 48.335 62.038 66.339 74.919
50 29.707 34.764 37.689 49.335 63.167 67.505 76.154
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Table D.2: Trials performed to check the validity of the computed confidence interval
(CI) in Equation (D.3).

Trial # Samp Std Dev 90% CI Min. 90% CI Max. Within CI
1 10.324 8.889 12.379 ✓

2 9.262 7.975 11.106 ✓

3 10.779 9.280 12.923 ✓

4 10.915 9.398 13.087 ✓

5 9.841 8.473 11.800 ✓

6 9.833 8.466 11.790 ✓

7 8.988 7.739 10.777 ✓

8 10.350 8.912 12.410 ✓

9 9.156 7.884 10.978 ✓

10 11.104 9.561 13.314 ✓

11 9.268 7.979 11.112 ✓

12 11.214 9.655 13.445 ✓

13 11.094 9.552 13.302 ✓

14 10.425 8.976 12.500 ✓

15 11.167 9.615 13.390 ✓

16 9.879 8.506 11.845 ✓

17 8.138 7.007 9.758 ✗

18 10.025 8.631 12.020 ✓

19 10.659 9.177 12.780 ✓

20 10.244 8.820 12.283 ✓

21 12.486 10.751 14.971 ✗

22 11.078 9.539 13.283 ✓

23 8.805 7.581 10.557 ✓

24 7.993 6.882 9.584 ✗

25 9.457 8.142 11.339 ✓

26 8.309 7.154 9.963 ✗

27 10.006 8.615 11.997 ✓

28 9.846 8.477 11.805 ✓

29 9.555 8.227 11.456 ✓

30 11.132 9.585 13.347 ✓

31 9.407 8.099 11.278 ✓

32 11.828 10.184 14.181 ✗

33 10.793 9.293 12.941 ✓

34 10.622 9.145 12.736 ✓

35 10.374 8.932 12.439 ✓

36 11.108 9.564 13.318 ✓

37 9.709 8.360 11.642 ✓

38 10.306 8.873 12.357 ✓

39 8.362 7.199 10.026 ✓

40 10.328 8.892 12.383 ✓

41 11.807 10.166 14.156 ✗

42 10.565 9.097 12.668 ✓

43 9.577 8.246 11.483 ✓

44 10.057 8.659 12.058 ✓

45 9.926 8.546 11.901 ✓

46 9.844 8.476 11.803 ✓

47 9.437 8.125 11.315 ✓

48 8.429 7.257 10.106 ✓

49 9.790 8.429 11.738 ✓

50 11.142 9.593 13.359 ✓
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